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Abstract 

The remote sensing and event classification of bright combustion or detonation 

sources requires enhanced understanding of fireball phenomenology, extensive collection 

of ground truth signatures, and the application of quantitative pattern recognition 

methodologies.  Temporally resolved mid-infrared Fourier Transform spectra, near 

infrared imagery, and 3-band visible imagery has been collected remotely from ground 

based sensors and processed and analyzed for several conventional and enhanced high 

explosive materials.  These sensors have been deployed in a series of five field tests to 

study and distinguish between (1) uncased trinitrotoluene (TNT) and enhanced novel 

explosive (ENE) materials at 10, 50, and 100 kg weights, and (2) two types of 

conventional weapons having three weights and detonated statically or aircraft delivered. 

Detonation fireballs from cased munitions are largely Planckian in the mid-

infrared with initial temperatures of 1200 – 1800 ºK attenuated by atmospheric 

absorption.  Temperatures often decay exponentially to ambient within 1 – 3 s for large 

charges of cased munitions and in less than 1 s for uncased or smaller weight charges.  

Occasionally, temperature profiles exhibit secondary maxima at 0.5 – 1 s after 

detonation.  Non-Planckian spectra features, particularly in the 1950 – 2250 cm-1 band, 

are observed with 10% deviation from Planckian behavior for cased munitions and often 

greater than 50% deviation for uncased munitions. Fireballs from uncased explosives 

typically attain a maximum area in the near infrared of 100 – 200 m2 at 20 – 200 ms after 

detonation.  Fireball size depends on imaging frequency band, with smaller and shorter-
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lived fireballs in the blue.  The combination of decaying temperature and growing fireball 

size often produces irradiance profiles with secondary maxima at 0.25 – 0.5 s. 

From the imagery currently studied, the single best feature for classification 

between uncased conventional (TNT) and ENE materials is the time to peak of the 

fireball size, tmp, in the near infrared.  For TNT tmp = 40 – 160 ms and for ENE materials, 

tmp = 0 – 60 ms.  Feature saliency from Fisher discrimination techniques always yields tmp 

as the most important feature, with duration of the fireball and symmetry of its area, as 

measured by the standard deviation in the median time and the skew in the residual of a 

parametric fit of the area, as secondary features.  The single feature tmp yields a Fisher 

ratio of F = 2.9±0.3 and 89% accuracy in robust testing of explosive type classification if 

the weight is known a priori (at 50 kg) and 87% and F = 2.5±0.1 if the weight is 

unknown.  The single best feature from the 3-band visible imagery is the maximum area 

in the blue band, Amp, of 10 – 60 m2 for TNT and 40 – 280 m2 for ENE.  This feature 

provides 93% and 79% correct classification and F = 5.4±0.2 and 4.4±0.1 for the 50 kg 

and unspecified weights, respectively.  Combining the time to peak size in the near IR 

and maximum area in the blue does not significantly improve classification performance.  

For a five class problem of two types and three weights, combining these two features 

does improve the classification performance from 54% to 74% for either feature alone.  

The single best feature for the five class problem is the time integrated area in the blue 

band, but this feature is highly correlated with the corresponding peak area.  In general, 

the fireball size derived from the image has more information about the type than the 

weight. 
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Probability density functions for each of these classification problems are 

estimated.  The stability of the densities with respect to choice of training data sets and 

systematic variation among several field tests is characterized.  For signatures from a 

single field test, the peak locations and widths of the density functions vary by about 

0.5% and 14%, respectively. Combining signatures from two field tests increases these 

values to 1% and 17%.  

The mid-infrared spectra from cased munitions can be reduced to a set of features 

that includes fireball temperature, area, and residuals to Planckian fits in selected spectral 

bands as a function of time.  The residuals in the 1950 – 2250 cm-1 band corresponding to 

hot CO2 emissions are typically less than 10% and provide the best discrimination 

between explosive type, size, and method of detonation (static or aircraft delivered).  

Discrimination based only on the peak residual provides 100% accurate classification and 

F = 14±1 between static and dynamic detonation for one type and size of munition and 

86% accuracy independent of type and size (F = 11.0±1.0).  Equally impressive is the 

ability to distinguish between large and small weights for static detonations at 100% 

accuracy and F = 99±32 using the residual immediately after detonation.  Uncased 

munitions exhibit highly non-Planckian behavior, offering strong classification potential 

for TNT and ENE materials. 
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consistency of these densities as a function of the training set used.  The two metrics 

of density stability used in this research are the standard deviations of the locations 

and heights of the density peaks. 
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CLASSIFICATION OF BATTLESPACE DETONATIONS FROM 

TEMPORALLY RESOLVED MULTI-BAND IMAGERY AND MID-INFRARED 

SPECTRA 

I. Introduction 

Commercial applications routinely leverage remote sensing technologies to 

monitor nearly static environments and phenomena that change very slowly over time.  

For example, NASA’s Landsat 7 satellite acquires images of earth land and coastal 

regions [1].  Many industries and research organizations apply various pattern recognition 

techniques to these images to identify crop and soil conditions [2], study forest ecology 

[3], and monitor earth climatology [4][5] and volcanology [6][7].  Similarly, the French 

space agency, Centre National d’Etudes Spatiales (CNES) uses its satellite system SPOT 

(Satellite Pour l’Observation de la Terre) for earth surveillance [8][9]. 

Remote sensing is also used to identify and characterize transient events occurring 

on the earth.  Although less common in commercial applications, some examples include 

monitoring forest fires [10][11] and Kuwait oil files [12][13].  The U.S. military is highly 

interested in detecting and classifying not only transient events, such as missile launches 

[14][15] and naval operations [16][17], but also fast transient events like gun muzzle 

flashes [18][19] and high-explosive detonations [20].  Fast-transient events occur on the 

order of milliseconds to a few seconds, and present significantly more complex remote 

sensing requirements than nearly static and transient phenomena occurring on the order 

of minutes to days. 
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Current remote sensors provide the ability to locate fast transient events and, in 

some cases, classify the event into known categories such as conventional or nuclear 

explosion [21][22].  Detecting and classifying such events requires either a well-defined 

model or a set of attributes, characteristics, or features to facilitate discrimination 

between viable alternative categories.  Surprisingly, no such information for detonation 

fireballs is available.  Indeed fundamental attributes such as fireball temperature, size, 

and duration are poorly understood and not documented in the peer reviewed scientific 

literature. 

A modeling approach to classifying fast transient events relies on the underlying 

physics and chemistry principles to estimate key signatures such as fireball emission 

spectra or non-optical measurements such as overpressure.  Classifying a fast-transient 

event might consist of adjusting the parameters of such a model until its signatures match 

those of the observed event.  While explosion phenomenology codes, such as CHEETAH 

[23], estimate the thermochemistry of a detonation, there are no corresponding non-

proprietary models for fireball emission spectra in the open literature.  Furthermore, 

many dimensional computer models do not effectively extract key features from observed 

data.  No approximate analytic models exist as are required for data analysis, 

dimensionality reduction, and feature extraction.  Previous modeling work has been 

accomplished by the High Explosives Research and Development (HERD) Facility at 

Eglin AFB, Los Alamos National Laboratories (LANL), and Lawrence Livermore 

National Laboratories (LLNL), Sandia National Laboratories (SNL), Riverside Research 

Institute (RRI), SciTec Inc., and National Ground Intelligence Center (NGIC).  However, 

without citations or references, their contributions are not available to the open public.  
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Furthermore, the respective capabilities are fragmented and do not provide a basis for 

reliable classification. 

Much has been done in condensed phase and shock [24][25][26] and in gun 

muzzle flash [27], yet the only open source describing fireballs from detonations has been 

work on characterizing bomb spectra [28].  There is no open documentation of basic 

attributes of fireball phenomenology, accurate and verified ground truth signatures, or a 

quantitative multivariate statistical methodology to demonstrate repeatable classification 

of explosives based upon their image and spectral characteristics.  One would expect to 

find in the literature simple descriptions of fireballs to include spectral shape and 

temporal behavior, typical temperature profiles, size descriptions, and temporal evolution 

phenomena.  All of these descriptors could depend greatly on a vast amount of a priori 

situations, i.e., explosive type and weight, munitions casing, detonation dynamics, and 

environmental conditions such as atmospheric transmission, dust, wind, etc.  All of these 

variables drive the need for accurate ground truth data that has been verified with 

multiple instruments and approaches.  These instruments should, at a minimum, provide 

radiometrically calibrated infrared spectra and imagery.  Likewise, sufficient data must 

be collected to demonstrate repeatability and distinguishability among explosive types 

and weights. 

A pattern recognition approach uses multivariate statistical techniques to classify 

fast-transient events based on comparing their key signatures to well-developed data sets.  

For conventional explosions, high-quality spectra and image data from ground-truth 

remote sensors is available for only a few type and weight classes, with typically less 

than two or three events per class.  Such data is prerequisite to developing a robust ability 
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to classify various explosive materials, weight, or delivery mechanisms based on their 

signature features. 

Through a series of field tests beginning in the early 1990’s, the United States Air 

Force investigated the possibility of classifying type, weight, and delivery methods of 

bomb explosions using remotely collected infrared spectral signatures [28][29][30][31].  

Yet these tests did not adequately address repeatability.  Thus additional data is needed to 

establish a basis for understanding fireball phenomenology from extracted spectral and 

image features that are reproducible for similar events and distinguishable for dissimilar 

events.  Pattern recognition techniques can quantify classification using key features and 

can guide further understanding of fireball physics and chemistry phenomenology. 

The approach taken in this research to address these needs includes four phases:  

(1) acquire new field data with new instrumentation and sufficient replications per event 

type to adequately establish reproducibility, (2) develop, simultaneously, simple 

phenomenological models to extract features from the data that show reproducibility and 

distinguishability, (3) apply standard pattern recognition techniques to quantify 

classification potential based upon a subset of features, and (4) identify a final set of key 

features that most accurately perform event classification using various a priori 

information. 

The present work addresses the following: (1) assess the feasibility and 

requirements for classification of battlefield detonations using temporally resolved 

emission multi-band imagery and moderate resolution spectra, (2) apply appropriate 

quantitative classification methodologies and tools using class-conditional probability 

densities, (3) demonstrate successful discrimination between conventional and enhanced 
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explosives, and (4) establish key phenomenology requirements for further exploitation of 

remote imagery and spectra. 

Two new field tests have been performed, generating highly calibrated spectral 

and imagery data.  A basic characterization of fireballs is developed, including temporal 

evolution of temperature and size.  The relative value of various extracted features for the 

classification of event type is established.  A method for discriminating between a 

conventional high-explosive material and an enhanced novel explosive is demonstrated.  

Finally, the potential for classification of battlespace detonations is addressed, and an 

approach to systematically exploiting this potential is developed. 
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II.  Background 

A. Detonation of High Explosives 

1. Energetic materials 

Energetic or explosive materials react to produce energy through a process called 

oxidation.  During oxidation, excess internal energy stored in an energetic material 

(compound) is released as it burns (or explodes) with oxygen to form products with lower 

internal energies.  Assuming a constant pressure, which is clearly not valid during an 

explosion reaction, the difference in these internal energies (∆U) creates a difference in 

enthalpy (∆H = ∆U + P ∆V) which is called the heat of reaction.  For explosions, it is 

called the heat of detonation and includes only the combustion of the explosive reactants, 

not the heat associated with the secondary afterburn.  This value is maximum when there 

is just enough oxidizer to burn the fuel to create products in their most oxidized state.  

Thus the lowest internal energy state is the highest oxidation state.  Typical components 

of explosives are carbon, hydrogen, nitrogen, and oxygen, thus expressed as CxHyNwOz.  

The highest oxidation states of carbon, hydrogen, and nitrogen are carbon dioxide (CO2), 

water (H2O), and nitrogen molecules (N2) which incidentally have lower energy levels 

than NO, NO2, …NxOy. [32:19-20] 

Two prominent explosive materials used in industry as well as for the current tests 

are RDX (used in Composition C-4) and trinitrotoluene (TNT) (See Figure 1).  Both of 

these are underoxidized, meaning that during a burn there is not enough oxygen to fully 

burn all the fuel.  TNT is considered very underoxidized.  According to Cooper, the rules 

of thumb for assessing the products of a detonation reaction are as follows: [32:131] 
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1. All nitrogen goes to N2. 

2. All the hydrogen burns with available oxygen to form H2O. 

3. Any oxygen left after step (2) burns carbon to CO. 

4. Any oxygen left after step (3) burns CO to CO2. 

5. Any excess oxygen forms O2. 

6. Any excess carbon forms C(smoke). 

 

 

   

Figure 1.  RDX (left) and TNT (right) are two commonly used explosive 
materials. [32:23] 

 

 

For example, in TNT the oxidation reaction is as follows:  

 C7H5N3O6 � 1.5 N2 + 2.5 H2O + 3.5 CO + 3.5 C +  ∆H (1) 

where possible stoichiometry include 

a. 3 N � 1.5 N2; 
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b. 5 H + 2.5 O � 2.5 H2O (3.5 O remaining); 

c. 7 C + 3.5 O � 3.5 CO (all the O is used up) + 3.5 C; and 

d. 3.5 C can create black smoke if not remixed in air. 

Thus an underoxidized fuel never reaches all the burning steps above unless it is 

detonated in air which provides enough oxygen for a secondary burn of the hot free 

carbons and carbon monoxide molecules.  This secondary reaction, called a secondary 

fireball or afterburn (AB), releases additional energy for a total change in enthalpy called 

the heat of combustion ∆Hc: 

 ∆HAB = ∆Hc – ∆Hd (2) 

Cooper says that these secondary fireballs can be further fueled by casings, glues, 

binders, and colorants that have been mixed with the explosive.  This fact should be kept 

in mind because some of the materials used in the novel explosives (explained later) 

cause a significant increase in the secondary fireball size and energy output.  [32:24] 

2. Basic Phenomenology 

As mentioned earlier, the heat of detonation ∆H is the heat (or energy) generated 

during the reaction and is transferred to the energy of the products of the reaction. A few 

experimental values of ∆H for some common explosive materials are given in Table 1. 

Table 1.  Experimental values of heats of 
detonation for pure explosive 
compounds. [32:132] 

Explosive ∆H 
(kcal/mol) 

PETN 471.1 
RDX 335.4 
TNT 247.5 
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Assuming the heat capacity at constant pressure Cp is temperature invariant and that the 

detonation products do not dissociate, one can use ∆H for TNT to estimate the detonation 

temperature to be 3725ºK using the relationship 

 ∆H = Cp ∆T (3) 

where ∆T = Tdetonation – Treactant and the heat capacity is the sum of heat capacities for each 

product Cp,i, 

 ∑
=

=
productsN

i
ipip CnC

1
, . (4) 

where ni is the number of moles for the product species shown in Table 2.  This final 

temperature is unrealistically large.  Allowing for the temperature dependence of the heat 

capacities,  

 ( ) 232
,

−++++= eTdTcTbTaTC ip , (5) 

where the coefficients a through e are defined in Table 2, the heat of detonation becomes 

an integral  

 ( )∫=∆
detonation

reactants

,

T

T

ip dTTCH  (6) 

which matches the Table 1 value of 247.5 kcal/mol at a detonation temperature of 

2994ºK.  Including dissociation effects would further reduce the temperature estimate to 

acceptable values less than 2994ºK. 
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As the explosive material burns, releasing the energy ∆H into the products, a 

shock wave inside the explosive material is formed.  As this detonation shock reaches the 

perimeter of the explosive material, it interacts with the surrounding medium, e.g. air, and 

creates an outward moving shock in the transport medium.  Most of the books such as 

Cooper [32], Klingenberg [33], and Zel’dovich [34] concentrate on understanding and 

parameterizing the detonation shock and the air shock; however, no known sources exist 

that adequately address the spectra of afterburning fireball dynamics.  The current 

research introduces two simple descriptions of the fireball dynamics. 

 

Table 2.  Molar concentrations, heat capacities, and coefficients to Eq(5) for the 
products of TNT detonation. [35] 

Product ni Cp(298ºK) a b c d e Trange 
  (cal/mol*K)      (K) 
CO 3.5 6.967 6.110801 1.457011 0.969086 -0.63846 0.031315 298-1300 

CO   8.401219 0.31073 -0.049216 0.003239 -0.784603 1300-6000 

N2 1.5 6.961 6.236138 1.964341 -0.472309 0.038067 0.01062 298-6000 

H2O 2.5 8.025 7.192161 1.633011 1.62367 -0.60576 0.019632 500-1700 

H2O   10.0297 2.06072 0.358456 0.023451 -2.66674 1700-6000 

C 3.5 4.9771 5.060971 -0.194175 0.107203 -0.01034 -0.003132 298-6000 

 

The photons emitted from the fireball afterburn are frequency and time dependent.  

A simple model of the fireball assumes it is hot (on the order of several 1000ºK), 

optically thick, and selectively radiates.  A blackbody obeys the Planckian radiation law 

for blackbody source radiance LBB or intensity IBB, 

 ( )( ) ( )( )
( ) ( )( ) 1exp

2,
,

32

−
==

tTkhc

hc

tA

tTI
tTL

B

BB
BB σ

σ
ε

σσ  (7) 
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which depends upon the frequency σ (in cm-1) and time t.  Both the temperature T(t) and 

fireball area times emissivity Aε(t) are functions of time for a radiatively growing, 

decaying, and cooling fireball.  The other constants include the Planck’s constant h, the 

speed of light c, and the Boltzmann constant kB.   

As illustrated in Figure 2, spectral data collected at a remote position, resembles a 

Planckian attenuated by the atmosphere with the function τatm(σ),  

 ( )( ) ( ) ( )( )tTLtTL BBatmobs ,, σστσ = . (8) 

The government standard atomospheric model is MODerate spectral resolution 

atmospheric TRANSsmittance algorithm and computer model (MODTRAN), developed 

by AFRL/VSBT in collaboration with Spectral Sciences, Inc.[36]  MODTRAN estimates 

are inadequate in describing the atmosphere with the fidelity needed to model the data.  

Thus the atmospheric transmission function exploits a non-linear regression approach that 

adjusts MODTRAN estimates of individual concentrations of the primary atmospheric 

absorbers, e.g. H2O, N2, CH4, CO2 which are identified in the figure below [37]. 
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Figure 2.  The Planckian radiation law (dashed line) multiplied by the appropriate 
atmospheric transmission function fits (solid line) the source radiation 
(dots).  The temperature and area-emissivity of this Radiant 3B event 
(E298_10S) are 1648.87 ± 0.06ºK and 1639.7 ± 0.8 m2, respectively. 

H2O CO2  CH4 H2O & CO2 H2O 

H2O 



www.manaraa.com

 

12 

With proper treatment of atmospheric absorption properties, the temperature, area, 

and emissivity derived from the blackbody model adequately represents most of the 

fireball information recorded in the spectra.  Later it will be shown that the atmospheric 

correction is important especially if the extracted features originate from non-Planckian 

portions of the modeled data.  Additional information about the fireball exists in the 

difference of the blackbody fit and the spectral data.  For this reason, the analysis of 

spectral data presented in Chapter 5 uses solely the blackbody model.  As long as the 

source data resembles a blackbody, then the fit parameters aid future work in 

phenomenology development and aid in the current work in relevant feature extraction. 

B. Remote sensing of IR emission 

The remote sensing of infrared signatures from bomb detonations, missile 

launches, and muzzle flashes provides unique data to characterize the battlespace.  In 

particular, the spectral and temporal signatures from explosive ordnance may be used to 

classify the munitions type, size, and other key characteristics.  Both ground-based and 

spaced-based remote sensing capabilities exist.  LANSAT is a good example of a space-

based remote sensing platform which collects scanning infrared imagery in eight spectral 

bands of the earth terrain [1].  Ground-based systems are endless.  The United States Air 

Force Institute of Technology’s (AFIT) system is a ground-based system which deploys 

at a safe distance and collects non-imaging Fourier Transform Infrared (FTIR) spectrum 

and near-infrared and visible imagery. 

1. Radiometric Quantities 

The amount of photons incident on a detector is dependent upon a number of 

standard radiometric properties:  radiant flux density leaving the detonation event (M), 
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transmission properties along the optical path (τatm), the range z to and size of the 

collecting optic Asource, the relative orientation of the detector (e.g., normal incidence), 

and detectivity of the detector material.  All of these properties except the atmospheric 

effects and detector detectivity are captured in standard radiometric quantities as defined 

by Boyd and repeated in Table 3 below and visually represented in Figure 3. [38:14] 

Table 3.  Radiation Quantities and Units 
Quantity Symbol Units Equation Defining Equation 
Radiant flux density at 
the detector (Irradiance) 

E Watt/cm2 1 

dA

d
E

Φ=  

2z

AL
E source⋅=  

( )
2

cos
z

I
E

θ⋅=  

Radiant intensity at 
the source 

I Watt/sr 2 

Ω
Φ=

d

d
I  

Radiance at the source L Watt/cm2 sr 3 
)cos(* θ







=
dA

dI
L  

Spectral Radiance L(σ, t) Watt/ (cm2 sr cm-1) N/A  
 

 

Figure 3.  Visual Representation of Radiometric Quantities (assuming no 
atmospheric transmission effects). 

 

AFB ≈  100 m
2

 

Range, z, e.g. 3258m 

Atmospheric properties, τatm 

Final, 
calibrated 

I(σ, t) 

Measured, 
uncalibrated 

L(σ, t) 

FOV 
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C. Non-Ideal Explosives Blast theory 

Non-ideal explosives mean a variety of things depending on the community.  In 

this research effot, non-ideal refers to those high explosives fueled by ammonium nitrate, 

aluminum, and a variety of other non-traditional fuel additives [39].  The result of 

aluminum alone creates a brighter secondary flash and more intense shock front caused 

by an increase in the product (Al2O3) temperature and decrease in particle density [40].  

Adding the non-traditional fuels intensify these effects as well.  The community now 

calls the secondary flash or re-mixing stage as the thermobaric part.  Thus, one will often 

find these explosives called thermobarics or thermobaric explosives, yet no open 

literature on the IR and visible emissions exist. 
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III.    Experimental Approach 

This section begins with a summary of the collected data sets from several test 

series, followed by a description of the instrumentation deployed by AFIT.  During the 

discussion, data quality for the Brilliant Flash test is examined since it is the source of 

data collected as part of this research effort. 

A. Recent Field Tests 

The following tables identify the different collection tests, their basic descriptions, 

the types of instrument data available for analysis, and a general description of each type 

of instrument.  Following these tables is a brief description of each collection. 

 

Table 4.  Known data collections dates, locations, and types of events. 
Collection 
Name 

Dates Location Types of 
Events 

Additional 
Information 

Radiant IIB June 1998 Fallon NV 53 of 67 
statically 
detonated 
ordnances 

 

Radiant IIIA August 1999 Fallon NV 42 air dropped 
ordnances, 100 
to 600 lbs of 
explosives 

varied with 
angle between 
collector 
observation and 
bomb impact 
vector 

Radiant IIIB October 1999 Fallon NV 23 static with 3 
types and 3 
weights 

tested 
repeatability 

Iron Rose June 2002 Fallon NV 58 M1/A1 tank 
muzzle flashes 

 

Brilliant Flash I June 2002 Tyndall AFB 
FL 

51 static, 
explosive 
material only, 2 
novel mixes and 
TNT, 3 weights 

Collected as 
part of this 
research effort 
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Collection 
Name 

Dates Location Types of 
Events 

Additional 
Information 

Brilliant Flash 
II 

June 2003 Utah Test and 
Training Range 
(UTTR) 

44 static, 
explosive 
material only, 3 
novel mixtures 
and TNT, 4 
weights 

Collected as 
part of this 
research effort 

Chinook September 
2002 

Undisclosed 16 Fuel Air 
Explosives 
(FAE) 

 

Northern 
Lights 

October 2002 Undisclosed 24 volumetric 
explosives: 
FAE and 
Thermobaric 
Explosives 
(TBX) 

 

 
 
 

Table 5.  Data Collection Metrics.   For each collection event, the types of data 
readily available are marked by "y", while the other types of  data 
collected but need to be obtained by AFIT is identified with an "x". 

Collection 
Name 

FTIR 
(MR154) 

FTIR 
(MR354) 

Radio- 
meter(1) 

Radio- 
meter(2) 

NIR 
FPA 

Visible 
CCD 

Visible 
Spec. 

IRIS256 
Imager 

Radiant 
IIB 

y   x x        

Radiant 
IIIA 

y   x x        

Radiant 
IIIB 

y   x x        

Iron Rose   x x x        
Brilliant 
Flash I 

y x x x y y     

Brilliant 
Flash II 

y y y x y y y x 

Chinook 
Winds 
Trials 

  x x         x 

Northern 
Lights 
Trials 

  x x         x 
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Table 6.  Instrument specifications overview. 
Instrument Spectral 

Range (cm-1) 
Spectral 

Resolution 
(cm-1) 

Temporal 
Resolution 

Additional 
Information 

FTIR MR154 
(Team A/AFIT) 

500-6000 1, 2, 4, 8, 16, 
32 

~3.6 spectra/sec 
(at 16 cm-1 
resolution) 

 

FTIR MR354 
(Team B) 

500-6000 1, 2, 4, 8, 16, 
32 

~82 spectra/sec 
(at 16 cm-1 
resolution) 

 

Radiometer(1) 
(Team B) 

2153-2245 
2509-2581 
3226-3704 
4348-4650 

whole band 200 Hz 4 radiometers 

Radiometer(2) Not Available Not Available Not Available  
NIR FPA 0.9-1.7 µm whole band 30 Hz 12-bit 

dynamic range 
[41] 

Visible CCD Red 
Green 
Blue 

whole band 30 Hz 3 CCDs [42] 

Visible Spec 385-550 nm 
470-530 nm 
565-910 nm 
570-800 nm 
570-882 nm 
655-880 nm 

0.4 nm 100 Hz 0.25-m 
grating; 
1024-element 
photodiode 
[43] 

IRRIS 256 
Imager 
(Team B) 

Thermal IR 
(3.6-4.1 µm 

and 
4.5-5.1 µm) 

whole band 40 Hz 256x256 

 
 
 

AFIT first participated in spectroscopic collections of munitions in the third of 

five test series called Radiant, sponsored by the Navy TENCAP and conducted at the 

Naval Air Station, (NAS) Fallon, NV from the summer of 1998 to the fall of 1999 [30].  

Radiant IIB was the third test in the series [28].  The following descriptions are 

paraphrased from Jay Orson’s thesis, Collection Of Detonation Signatures And 
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Characterization Of Spectral Features [28], Robert Houser’s thesis, Survey of Military 

Applications for Fourier Transform Infrared (FTIR) Spectroscopy [44], and Science 

Applications International Corporation’s (SAIC) Test Report. [45] 

Radiant IIB was a static recreation of the previous Radiant IIA test.  Calibrated 

radiometric and optical signatures from 53 of 67 events were collected and further 

assessed that the many discrepancies discovered in the previous test relate to bomb 

delivery angle, ground penetration depth, aircraft release manner, look angle of bomb to 

observers line of sight, and ground surface interaction.  Two different ground truth teams 

deployed four radiometer suites with similar spectral filters. 

Radiant IIIA test consisted of 42 air-dropped explosion events over a period of 

three days in summer of 1999.  The primary test objective was to collect munitions 

signatures deployed in normal operational configurations against ground targets.  This 

was accomplished by altering the angle between collector observation and bomb impact 

vector.  The distance to the target from the observation tower was 4825 m.  Each day the 

scheduled events varied by aircraft heading, amount of explosive and explosive type.  

Ordnance weights were extra small (< 100 lbs), small (100-400 lbs), medium (400 to 600 

lbs), and large (> 600 lbs) of explosive. 

Radiant IIIB consisted of 23 statically detonated events over the course of two 

nights in fall of 1999.  Three different explosive types and three different explosive 

amounts were used during this test.  The ordnance was situated on solid ground and 

propped up on wooden tripods at a 45 degree elevation angle tail high.  Each bomb face 

was pointed toward the instrumentation.  The larger bombs were placed in clay craters 

tail high at the largest elevations possible. 



www.manaraa.com

 

19 

A portion of Radiant IIIA and IIIB data is further analyzed in the later portion of 

this research.  A full description of the event types, the data collection methods, and the 

data quality are presented in Orson’s thesis [28].  Nevertheless, a few items are repeated 

here and later in this document to identify which portions of the data are being used.  

First of all, the two ordnance types are examined, called Type A and Type B in this work.  

Type A events are of a “small” weight and nine are dynamically dropped from a military 

aircraft while another nine are placed on the ground as explained above.  Type B events 

consist of two weights, “medium” and “large:”  six large are dynamically dropped, two 

large are statically detonated on the ground, and three medium are dynamically dropped.  

The field test layout is shown in Figure 4.  

Iron Rose consisted of 58 rounds of M1 and A1 tank muzzle flash collected one 

day in June 2002 at Fallon for the purpose of establishing reproducibility.  The 

radiometer data is reported as acceptable.  The spectrometer data is in question because 

its field of view was overfilled.  Data from an IR imager is available. [46] 

The purpose of the Brilliant Flash test series is to identify methods of explosive 

material discrimination using remote sensors.  As the principle investigator, the author 

lead an AFIT team (team A) along side a second team (team B) to collect signatures from 

these two test series using Bomem made FTIRs and various other infrared and visible 

instruments.  Brilliant Flash I test consisted of 51 static explosive-material-only events 

during the summer of 2002 at Tyndall AFB Florida [47].  The detonations consisted of 

uncased explosive materials that were assembled with readily available components.  The 

center of mass of the explosive materials was placed approximately one meter above 



www.manaraa.com

 

20 

 

Figure 4.  This graph displays the geometry of the Radiant IIIA and IIIB tests as 
explained in Jay Orson's thesis.[28] 

 

ground.  The types of explosive materials used were trinitrotoluene (CH3C6H2(NO2)3) 

[48] (TNT or Type A) and two other enhanced mixtures (Types C and D) which varied in 

aluminum and other additives concentrations.  The weights ranged from 1 to 100 pounds.  

Each type of explosive material at a specific weight was detonated three times.  The 

range from the observation point to ground zero was 460 meters. 

Air drop  
vectors 
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Brilliant Flash II test consisted of 44 static explosive-material-only events that 

were detonated at the Utah Test and Training Range (UTTR) over the period 2-13 June 

2003 [49].  Again, the author led an AFIT team to obtain multi-band imagery and mid-

infrared spectra.  This test range is located at approximately 85 miles east of Salt Lake 

City, Utah.  As depicted in Figure 5, the ground truth instruments were located on Diddle 

Knoll at 40º54.5300’N, 113º09.2767’W, and 1424 meters above sea level (using World 

Geodetic System 1984, WGS-84, model of the earth [50]).  Ground zero was 3258 meters 

away at 40º55.5817’N, 113º11.1350’W and 1291 meters above sea level.  The soil was 

dry, dusty dessert and the weather was usually clear with only a few exceptions toward 

the end of the test.  The materials used in this test are the same as in Brilliant Flash I with 

the addition of two other enhanced mixtures (Types B and E).  Each type of explosive 

material at a specific weight was detonated four times.  The weights ranged from 10 to 

1000 kilograms (22 to 2200 pounds).   

Each of these Brilliant Flash tests required approximately six man months of 

effort to prepare, execute, and initially report on the test.  Preparation included analysis 

software development, instrumentation testing and validation, and end-to-end dry-runs 

with all deployable equipment and personnel.  The execution was approximately two and 

a half weeks and included coordination with explosive ordnance disposal (EOD) 

personnel, other instrumentation teams, and range safety.  Calibrations were performed 

between every test shot to minimize errors in calculating absolute intensity.  Likewise, 

cross-sensor comparisons were frequently conducted between two spectrometers and four 

radiometers.  Finally, an initial analysis of data quality and of data interpretation is 

summarized with a “first look” report for the sponsoring agency. 
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The Chinook Winds Trials test collected performance data on various gear and 

equipment deployed in extreme overpressure environments.  This collection was over a 

two week period from 3 to 13 September 2002.  The team B was invited to observe and 

collect data.  Sixteen fuel air explosives (FAE) devices were tested in the two-week 

period including thirteen 66-liter mixes, two 30-gallon mixes, and one much larger mix.  

The test team collected radiometric, spectrometric, imager, digital video and digital still 

photographic data from all but the first event [46]. 

 

 

Figure 5.  The test layout geometry includes ground zero indicated by the star and 
the instruments located at Diddle Knoll, 3258 m to the southeast.  The 
contour lines are spaced at 20 m terrain height increments. 
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The Northern Lights Trials test collected performance and signature data on 

volumetric explosives.  Twenty four volumetric explosives of various designs and sizes 

were also detonated over a two week period from 23 September through 4 October 2002.  

Unambiguous, well-calibrated spectro-radiometric data as well as test article, test layout, 

and meteorological data were collected throughout the test. [46] 

B. Instrumentation 

1. AFIT Bomem MR-154 FTIR instrument 

A Bomem MR-154 Fourier Transform Infrared Spectrometer coupled to either a 

75, 28, or 4.9 mrad field of view (FOV) telescope is used to record the infrared emission 

from fast transient events.  The FTIR data is typically figured to investigate higher 

spectral resolution (4 cm-1) at the expense of less temporal resolution (0.123 s).  Two 

detectors, InSb and HgCdTe, covering the 1800 – 6000 cm-1and 500 – 6000 cm-1 ranges, 

respectively, are used to simultaneously record interferrograms from an event.  Typical 

event signals are 15-20 times the background.  The interferometer is temperature 

controlled at 45ºC to minimize the effects of ambient temperature changes.  A cold 

reference source is maintained at 77 K.  The InSb detector typically provides a 

background noise signal of 5 to 50 W/Sr/cm-1, about 5 times less than the HgCdTe 

detector.  Background spectra were recorded before each event and typically exhibited a 

peak of 100 W/Sr/cm-1 at about 2000 cm-1.  The event intensity peaks ranged from 250 to 

10000 W/Sr/cm-1. 

The calibration procedure for the Bomem MR-154 FTIR instrument is 

exhaustively documented in the Bomem literature and several previous AFIT theses.  A 

short explanation is given here.  Calibration allows the conversion from recorded voltage 
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from the detectors to an absolute radiance.  Three blackbodies are typically used to 

provide a 3-point temperature calibration.  The voltage response is linearly fitted to the 

three calculated Planckian blackbody emission spectrum.  The result is a linear response 

between a measured voltage and the absolute radiance, each as a function of wavenumber 

(frequency).  The corresponding expression is  

 )()()()( 1 σσσσ SKLL Meas
Calibrated −= −  (9) 

where  

LCalibrated is the absolute spectral radiance signal (W cm-2 Sr-1),  

LMeas is the measured spectral voltage signal,  

K is a spectral fitting term that accounts for geometry parameters (range, size of 

target, and field of view) and atmospheric transmission, and  

S is the system stray spectral radiance. 

 

Typically, one performs the calibration measurements with similar geometry and 

system settings as the event measurements.  Since the range to the detonations in Brilliant 

Flash is too large for measuring a 1000 K blackbody for calibration, several actions are 

taken to compensate.  The calibrations to obtain K and S values for this test are based 

upon a close range (50 feet) and are applied to each event creating a radiance value 

(LCalibrated) appropriate for 50 feet.  This radiance is then rescaled into spectral intensity 

I(σ) (W/Sr/cm-1) using the correct range to the event and removing the blackbody area.  

The scaling factor is 
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2

2
2

BB

event
BBC z

z
rf ⋅⋅= π  (10) 

where the factor, fC, is the area of the blackbody used in the calibration, π rBB
2, multiplied 

by the squared ratio of the event range, zevent, divided by the blackbody range, zBB. 

Detector gain settings and layers of mesh screens are used to control the amount 

of photons hitting the detector to avoid saturation.  The mesh screens are made of ~0.1 

mm wire, spaced in ~1 mm square grids.  The gain settings are in the approximate ratios 

of A:B:C=1:2:4.  A gain setting of "B" will increase the voltage response of the detector 

by a factor of 2.  When the event signal is intense enough to cause saturation, the gain 

settings are set to A and various layers of mesh screens are used as appropriate to reduce 

the throughput of the signal.  The mesh screens are placed directly in front of the 

detector.  The voltage responses of the meshes are measured in the field and compared to 

the voltage when no mesh is used.  The resulting ratios are recorded in Table 7 and serve 

as a guide to the factor of voltage drop due to the number of mesh layers used.  For 

example, a factor of 4 means this mesh setting reduces the incident light recorded in volts 

by a factor of 4.  This one step in the calibration procedure may be the largest source of 

calibration error.  For this reason, future test collections should utilize neutral density 

filters with known spectral responses. 

 

Table 7.  Signal response factors from using layers mesh screens. 
# of Screens MCT InSb 

2 4  
3 8 9 
6  32 

 



www.manaraa.com

 

26 

Calibration accuracy is evaluated by estimating the middle temperature using only 

the upper and lower temperatures for calibration.  The calibration temperatures were 

900ºC, 950ºC, and 1000ºC.  A 5% error in the calibration means the predicted middle 

temperature was 5% off of 950ºC or ±48ºC.  A 0.5% error equates to a 4.8ºC error.  

Figure 6 shows example data collected by the Bomem FTIR instrument (InSb 

detector) during the Brilliant Flash I test [31].  The spectra for a single time step 

immediately following the detonation of three similar charges are provided in Figure 7.  

The spectral intensity values  
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Figure 6.  Observed spectral intensity Iσ as a function of time t and wavenumber σ 
for Brilliant Flash II Event 05, a medium type C detonation.  The FTIR 
temporal and spectral resolutions were 0.123 s and 4 cm-1. 

 

range from approximately 1000 W/Sr/cm-1 to 3000 W/Sr/cm-1 with very similar spectral 

response.  Atmospheric effects seem to be consistent across the wavenumber range and 

help govern the bands of interest as defined in Table 8. 
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Figure 7.  Three records of emissions from the detonation of type C as collected 

by the InSb detector.  Specific bands are indicated across the top and 
are defined explicitly in Table 8.  The spectral resolution is 4 cm-1.  The 
Brilliant Flash II events shown here, from top to bottom, are 06, 05, 
and 10. 

 

Table 8.  Definition of spectral bands of interest. 

Band 
σσσσstart 

(cm-1) 
σσσσstop 

(cm-1) 
λλλλstart 
(µµµµm) 

λλλλstop 
(µµµµm) 

I  2153 2245 4.455 4.645 
II  2509 2581 3.875 3.985 
III  2450 2800 3.57 4.08 
IV  3226 3704 2.7 3.1 
V  4348 4650 2.15 2.3 
VI  5700 6000 1.67 1.75 

 

A concentrated effort is made to validate the MR154 FTIR instrument data with 

another FTIR instrument (Team B’s MR354) and a set of radiometers for the same 

collections.  To compare the spectrometer data to the radiometer, the spectral intensity 
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from the spectrometers is integrated over the four radiometer bands.  The radiometer 

bands are bands I, II, IV, and IV defined in Table 8.  The radiometers are not down-

sampled because the sampling rate of each of the spectrometers is sufficient to match the 

peak intensities.  The scaling factors fscale, defined in Eq. (11) below, that are required to 

match the peak intensities of the spectrometers to the radiometer data is given in Table 9 

for each explosion event.  Figure 8 shows one example of this type of comparison while 

Appendix K contains all the comparisons.   

 
radiometer

erspectromet
Scale Peak

Peak
f =  (11) 

Table 9 highlights with boxes those data that have poor temporal comparisons, 

e.g. Figure 9, and it highlights with dark background those data with very large (small) 

scale factors.  In general, the fits overlay well, even with the large standard deviation in 

the scaling factors as shown in the table.  The bottom row of the table shows the number 

of events that are within 33% of the radiometers.  During Brilliant Flash II, the AFIT 

FTIR instrument agreed with the other FTIR and radiometers to within 33 percent in 

Band IV as shown in Figure 10. 

 



www.manaraa.com

 

29 

59:59.774 59:59.974 00:00.174 00:00.374 00:00.574 00:00.774 00:00.974 00:01.174

0

1

2

3

4

5

6

7

8

x 10
5

t (MM:SS.sss)

I (
W

/S
r)

NAIC Radiometer Band I
NAIC Spectrometer Band I x 0.95665
AFIT Spectrometer Band I x 0.89738

59:59.774 59:59.974 00:00.174 00:00.374 00:00.574 00:00.774 00:00.974 00:01.174

−2

0

2

4

6

8

10

12

14

x 10
5

t (MM:SS.sss)

I (
W

/S
r)

NAIC Radiometer Band II
NAIC Spectrometer Band II x 0.83453
AFIT Spectrometer Band II x 0.81369

59:59.774 59:59.974 00:00.174 00:00.374 00:00.574 00:00.774 00:00.974 00:01.174

0

1

2

3

4

5

6

x 10
5

t (MM:SS.sss)

I (
W

/S
r)

NAIC Radiometer Band IV
NAIC Spectrometer Band IV x 0.86957
AFIT Spectrometer Band IV x 0.78813

59:59.774 59:59.974 00:00.174 00:00.374 00:00.574 00:00.774 00:00.974 00:01.174
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
6

t (MM:SS.sss)

I (
W

/S
r)

NAIC Radiometer Band V
NAIC Spectrometer Band V x 0.74837
AFIT Spectrometer Band V x 0.68478

 

Figure 8.  Comparison plots of AFIT MR154 InSb spectrometer data (dash-dot 
line) with the MR354 InSb spectrometer (dotted) and radiometers 
(close dots) for Brilliant Flash II event 31, Type A, 50 kg.  Each 
spectrometer data is integrated over the bands, scaled to the height of 
the radiometer, and shifted in time if necessary to align with the 
radiometer.  Figure (a) is from band I (4.45-4.65 µm), figure (b) is from 
band II (3.88-3.99 µm), figure (c) is from band IV (2.7-3.1 µm), and 
figure (d) is from band V (2.15-2.3 µm). 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 9.  A second set of comparison plots of AFIT MR154 InSb spectrometer 
data (dash-dot line) with the MR354 InSb spectrometer (dotted) and 
radiometers (close dots) for Brilliant Flash II event 25, Type A, 50 kg.  
Each spectrometer data is integrated over the bands, scaled to the 
height of the radiometer, and shifted in time if necessary to align with 
the radiometer.  Figure (a) is from band I (4.45-4.65 µm), figure (b) is 
from band II (3.88-3.99 µm), figure (c) is from band IV (2.7-3.1 µm), 
and figure (d) is from band V (2.15-2.3 µm). 

 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
(c) (d) 
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Table 9.  Scaling factors fscale used to equate the peak intensities in specific spectral bands 
from the MR354 and MR154 (AFIT) InSb spectrometers to the radiometers. 

Event 
No. 

fscale 
MR354 
band IV 

fscale 
MR154 
band IV 

fscale 
MR354 
band II 

fscale 
MR154 
band II 

fscale 
MR354 
band V 

fscale 
MR154 
band V 

fscale 
MR354 
band I 

fscale 
MR154 
band I 

1 1.1622 9.4408 1.9226 6.0387 0.83921 5.5112 1.1441 1.4088 
2 2.1939 5.7004 6.6754 33.3165 5.1409 24.4676 1.3627 3.9784 
3 1.5678 0.79083 2.2402 0.67052 1.6675 1.0592 1.5398 0.32145 
4 0.50223 1.1512 0.51647 0.45002 0.35741 0.60798 0.34243 0.25454 
5 1.1889 2.0388 1.3578 2.1617 0.90527 1.4461 1.1704 2.0784 
6 1.1162 1.1124 1.4943 1.4884 1.0306 1.1169 1.2411 1.4215 
7 1.9094 6.3297 1.1932 4.2493 1.0233 3.491 1.7674 3.1157 
8 NO MR154 DATA      
9 NO MR154 DATA      
10 0.92134 1.161 1.216 2.4783 0.89689 1.6634 1.0578 1.784 
11 0.93792 0.7357 1.2132 0.65841 0.86644 0.72284 1.0743 0.65126 
12 NO MR354 DATA      
13 0.9386 0.919099 1.02 1.94 0.82099 1.2924 1.0176 1.1622 
14 0.94572 2.5974 1.3675 7.2499 1.1739 5.52 1.0045 3.013 
15 0.923 0.96969 1.5488 2.6716 1.1652 2.1508 1.0721 0.84789 
16 NO MR154 DATA      
17 1.0714 1.4233 2.0594 3.2308 1.6736 2.5074 1.0975 1.6847 
18 2546.2 2886.9 8722.5 8987.5 3470.9 3636.7 911.5 1158.0 
19 0.92955 0.50865 1.2735 0.35588 0.78025 0.77756 1.0469 0.20818 
20 NO MR154 DATA      
21 0.98686 0.76479 1.8382 1.2002 1.1015 0.78679 1.0867 0.83775 
22 1.0787 0.82015 0.98281 0.77432 1.22 0.58966 1.0271 0.91404 
23 0.77961 0.79787 0.88411 0.88857 0.63242 0.66686 0.86986 0.92449 
24 NO MR154 DATA      
25 0.85512 0.31892 0.79551 0.27086 0.77154 0.28509 0.95865 0.40109 
26 0.89759 0.70837 0.78689 0.81517 0.91715 0.88553 0.98668 0.90318 
27 1.1188 0.85383 0.92349 0.9178 1.0802 0.80706 1.086 1.0008 
28 1.0448 0.75794 0.95355 0.71403 1.0763 0.65027 1.0785 0.80485 
29 0.8549 0.74199 0.79032 0.72632 0.72458 0.67946 1.4283 1.2874 
30 0.79029 0.72622 0.78557 0.73067 0.72564 0.6366 0.91511 0.93544 
31 0.86957 0.78813 0.83453 0.81369 0.74837 0.68478 0.95665 0.89738 
32 6.38E-06 9.85E-06 6.93E-06 1.10E-05 5.17E-06 7.86E-06 9.34E-06 1.67E-05 
33 1.4928 3.9084 1.21 2.3889 4.0497 567.2614 0.04857 0.12099 
34 2.0303 0.99929 3.125 0.888 1.74 0.629 1.33 0.377 
35 NO MR354 DATA      
36 0.81934 0.59939 0.87256 0.63584 0.66719 0.52567 0.86798 0.55753 
37 0.84436 1.069 1.0304 1.0017 0.67128 0.66573 0.08657 0.12166 
38 0.76723 0.53047 0.93506 0.691 0.64834 0.45567 12.3027 10.2611 
39 0.80167 0.687 0.88608 0.94671 0.77744 0.85267 0.8114 0.6573 
40 0.80587 0.57139 1.0227 0.97791 0.60548 0.57702 0.82766 0.84184 
41 0.78196 0.72459 0.97557 0.90834 0.65136 0.61716 0.84063 0.81513 
42 0.86712 0.67437 1.1115 0.90247 0.69134 0.55856 0.95522 0.78762 
43 1.0208 0.80999 1.0768 0.88975 0.82645 0.57875 0.91795 0.85061 
44 0.80712 0.66776 1.1151 0.92209 0.73969 0.57139 0.88427 0.84512 
         
mean 1.1 1.5 1.4 1.5 1.1 1.3 1.3 1.3 
std 0.4 1.9 1.0 1.6 0.9 1.3 1.9 1.8 
±33% 29 22 24 19 25 13 27 16 
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Figure 10.  Scaling factor for band IV using the MR154 InSb spectrometer data 
(

▲
) and the MR354 InSb spectrometer data (∆).  The 33% lines are 

drawn as dotted lines with the included area shaded. 
 

2. 3-chip CCD camera images 

A Cannon DM-XL1A video camera with a 16x, 200mm lens is used to acquire 

color motion pictures of the events at 30 Hz.  The camera records the red, green, and blue 

images simultaneously on a three chip detection system.  The camera manufacturer does 

not release the spectral response of the camera, thus the color bands are assumed to center 

around 700 nm, 540 nm, and 450 nm, respectively.  The shutter speed is set sufficiently 

high, e.g. 1/1000 to 1/4000 s, to reduce the background signal to a near dark scene and to 

avoid saturation at multiple time frames.  Post processing allows one to separate the 

colors and view the event image in these three broadband color regions.  Figure 11 is one 

example of a single event frame and shows the three contributing visible bands.  Figure 

12 is another example of the time evolution of each color for another event. 
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Figure 11.  Each of the RGB colors is extracted through post processing from the 
original RGB image recorded by the Cannon 3-chip CCD.  The 
detonation recorded in the blue band is outlined in white. 

 

 

 

 

 

Figure 12.  The first four frames of an event are shown here for each primary 
color and the composite RGB image.  The detonation recorded in the 
blue band is outlined in white. 
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3. Near-Infrared (NIR) imagery 

An Indigo Systems Alpha Near-Infrared (NIR) InGaAs Focal Plane Array (FPA) 

with good spectral response in the 0.6 - 1.7 µm band is used to record detonation images 

at a 30-Hz temporal resolution with a standard Minolta 400 mm telephoto lens 

(1.36º x 1.10º) and with a 12-bit dynamic range onto a 316 x 256 pixel array.  The 

aperture is typically set at f/11 and the exposure time is set 250 µs, both of which help 

reduce pixel saturation.  Typical InGaAs images for the five types are shown in Figure 

13.  Given the range (3258 m) and lens field of view (FOV), the spatial resolution is 

0.24 m x 0.24 m or an equivalent far-field pixel area of 0.060 ± 0.004 m2 which is 

significantly smaller than a typical fireball area (100-200 m2).  The uncertainty in the far-

field area comes from the difference in the calculated and lab-measured lens FOV 

(1.32º x 1.06º). 

 

Figure 13.  InGaAs camera images exhibit the relative sizes of the fireballs immediately 
after detonation.  The images clearly show two intensity levels: one associated 
with the very bright fireball and the other associated with ground reflections.  
These images were collected during Brilliant Flash II and all represent 50-kg 
weights. 
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One method of interpreting the images is to examine the pixel intensity 

histograms.  Such a histogram is shown in Figure 14 and graphically displays the number 

of pixels that record each intensity level I.  The Alpha NIR camera records 12-bit 

intensity, ranging from 1 to 4096 digital numbers or DN.  This representation of the 

image facilitates one to examine pixel distributions with respect to intensity.  For 

example, Figure 14(a) illustrates that during the detonation of an event clear separation 

between the number of pixels having very high intensities (> 3000 DN) and those with 

significantly lower intensities (<1500 DN).  Figure 15 spatially identifies these relative 

intensities on an example fireball image.  Figure 14(b) is background data collected prior 

to detonation and clearly shows a single distribution of pixels below 600 DN.   

Both scene radiance and pixel responsivity drive the widths of histogram 

distributions, as demonstrated by comparing the width of high intensity pixels in Figure 

14(a) inset to the width of background scene pixels in Figure 14(b) inset.  The 

distribution about 500 DN in Figure 14(b) may indicate the distribution of pixel bias.  

The histogram in Figure 14(a) strongly indicates saturation, implying that the width about 

3950 DN could represent the way the pixels saturate at the limit of the analog to digital 

conversion, i.e. the saturation effects each pixel differently.  Normally, saturation effects 

are bad if the neighbor pixels are influenced.  Yet according the histogram, the 

distribution of pixels associated with the very intense source is highly separated from 

those pixels associated with less intensity.  The pixels along the edge of the fireball, as 

pointed out in Figure 15(b), are potentially corrupt; however, they only account for 

approximately 1% of the total fireball area. 
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Figure 14.  One representation of the range of pixel responsivity is the range of 
intensities I that a pixel will register for a given input source intensity.  
Both figures displays the number of pixels N at each registered 
intensity level I on a 12-bit scale.  Fig. (a) represents the signal during 
an event frame.  Its insert is a zoom of the 3550-4050 DN intensities.  
Fig. (b) shows the histogram for the background scene prior to 
detonation with 440-560 DN emphasized. 

 

 

Figure 15.  Relative NIR intensities of a 50-kg Type-C fireball as recorded by the 
Alpha Indigo camera:  (a) pixels above 3000 DN, (b) pixels between 
2400 and 3000 DN, (c) pixels below 2400 DN and above background 
illumination. 
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IV.  Developing Discrimination Tools using Image Data 

At the heart of this research lie two primary objectives: first, to develop the tools 

for feature extraction and pattern recognition of collected data originating from the fast 

transient events and two, to utilize these patterns to establish distinct and reproducible 

features that aid classification between two types, TNT and enhanced explosives, and that 

aid in understanding bomb emission phenomenology.  The first goal is to identify those 

key features and different analysis approaches that provide discrimination between 

classes where each class represents a specific combination of explosive type and weight.  

With this goal, there are two possible approaches.  One creates a model based upon first 

principles and then analyzes how the data matches that model.  The second approach uses 

the data to extract key features that will aid in classification.  The second approach is the 

focus of this research.  The models that are developed in this research are not derived 

from first principles but are ones that capture discriminatory features in the collected 

data.  The models, features extracted, and pattern recognition techniques to date are 

explained in this chapter.  Additionally, the examples used in the discussion are from 

Brilliant Flash I and II field data of uncased explosive materials.  Following the tool 

development, the next chapter applies these tools to spectra collected during Radiant field 

tests where the targets are cased munitions. 

The discriminate tools are now described in this chapter and the example data is a 

subset of field data provided by the Alpha Indigo InGaAs near-infrared (NIR) camera and 

the Cannon XL1 3-chip video camera.  These tools extract key features from the image 

data, determine feature saliency and stability, and provide figures of merit to evaluate the 
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data.  Two variants of the technique are presented: the first assumes two explosive types 

at the same weight and the second examines five classes consisting of two types and three 

weights.  With each of these tools, the NIR and 3-chip color camera data are examined 

independently before combining the two sources.  Finally, conclusions about these tools 

applied without a priori assumptions to the field data are presented. 

A. Near-Infrared Imagery Field data 

A typical detonation fireball image and the corresponding pixel intensity 

histogram for a 50 kg Type A detonation are shown in Figure 16.  The first frame 

represents the pre-detonation background.  Note the narrow distribution at low intensity 

between 1200 and 1300 DN indicating a detector bias plus a nominal background.  The 

second frame corresponds to the detonation event (t = 0) where the pixel illumination 

intensities shift above the pre-detonation intensity level.  Each additional frame is 

delayed by 33 ms.  After detonation, two significant features can be discerned: (a) a high 

intensity (DN > 3500) feature representing the intense center of the burning fireball, and 

(b) a low intensity (1000 < DN < 2000) feature representing the emission from the 

smoky/dusty portion of the fireball and any diffuse reflection.  Both features decay to 

background within 300 to 550 ms.  The pixels that have intensities that approach the limit 

of the camera’s 12-bit dynamic range could be saturated at I = 212 = 4096 DN, but the 

number of pixels associated with the fireball remains unchanged.  The signal of interest is 

the high intensity distribution associated with the fireball, which has intensity 

characteristically greater than ten times the lower intensity associated with background 

illumination.   
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Figure 16.  (a) A single image at detonation time (t =0 ) and corresponding (b) 
temporal evolution of the histogram for each image.  Each histogram is 
shown as a function of the number of pixels (N), the pixel intensity I in 
digital numbers (DN) along the abscissa ranging from one to 4096, and 
the detonation time (-33 msec 

≤
 t 

≤
 400 msec).  The line at I=3000 DN 

aids in calculating fireball size.  The number of pixels N at the low 
intensities are cut off in this figure to aid clarity between the low and 
high intensity features.  This histogram and corresponding image is 
from one 50-kg Type A explosive material detonated during Brilliant 
Flash II. 

 

In Figure 17(c) and (d) the histograms for Type C and D detonations consistently 

indicate a larger, more intense fireball initially upon detonation.  They also exhibit a more 

intense dust cloud/diffusion reflection signature.  A video of the InGaAs imagery clearly 

reveals re-circulation (vortices) within the intense fireball.  There are usually about three 

vortices seen from the camera angle; each one approximately a third of the fireball size.  

The histogram in Figure 17(b) for the Type B charge shows a much shorter-lived fireball 

(approximately 167 msec) than the other types (typically greater than 400 msec). 

 (a) 

(b) 
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Figure 17.  Histogram for the number of InGaAs pixels N illuminated at various 
intensities I as a function of time t for: (a) Type A, (b) Type B, (c) Type 
C, (d) Type D, and (e) Type E 50-kg charges.  The total number of 
pixels in the InGaAs array is 80,896 so that a pixel count of 1000 is 
about 1.2% of the detector array. 
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The fireball size calculation exploits the large separation (typically 1800 DN) 

between the distributions of pixel intensities associated with the hot fireball and of those 

associated with the background.  For instance, the fireball area is calculated by scaling 

the total number of pixels above a threshold value (e.g., the solid line at I = 3000 DN in 

Figure 16) to the actual field of view of the collecting instrument.  Using this metric, the 

temporal behavior of the fireball size is compared for various types of explosives.  The 

results for the five types of 50 kg detonations (Brilliant Flash II) are provided in Figure 

18.  Fireball areas calculated from Brilliant Flash I data are provided in Appendix A. 

The fireball area calculated in the first frame of the event could potentially be 

misleading depending on the event time coinciding with the camera frame timing.  For 

example, the NIR camera collects a new image every 33 msec, however, to reduce 

saturation the flux of incident light onto the detector is reduced by lowering the camera 

explosure time, typically 250 µsec.  The uncertainty in the actual start time could be up to 

33 msec. 

The fireballs from event Types A, C, D, and E are consistently larger and longer-

lived than Type B events.  Even more pronounced are the temporal histories of the 

fireball area.  The fireball for Type C, D, and sometimes E events exhibit a sudden initial 

large area not observed for the other event types.  For example, the ratio of fireball area at 

166 ms and 66 ms for Type B event is small (~0.6) and is much more for the two other 

detonations (~1 for Type A and ~0.9 for Type C).  The outlier event in the Type D class 

is approximately 0.7 the size of the others.  This same reduction is also seen for this event 

in the data simultaneously recorded by a spectrometer. 
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Figure 18.  Reducing the image data down to the temporal behavior of the fireball 
area provides one method of showing reproducibility within a class and 
distinguishability between the classes.  Pattern recognition will further 
remove the similarities among the curves and find the best method of 
discrimination.  The five types shown in this figure are 50-kg weights 
from the Brilliant Flash II test.  Type A is TNT. 
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These fireball areas not only show promise at distinguishing explosive types, but 

also demonstrate reproducibility.  Notice that within each type of explosive, the fireball 

areas overlay each other within 15 to 30 percent.  The only exception is already identified 

as a Type D event. 

B. Feature extraction 

To fully utilize pattern recognition tools, these fireball areas are further reduced to 

a set of features that capture much of the fireball area information.  In essence, the 

collected image data is reduced to a set of simple features.  There are numerous ways to 

extract features from the area curves.  The best begins with parameters that represent a 

phenomenological-based model.  Without this description of the fireball emission, a 

pragmatic approach obtains simple features from the derived area.  The first seven such 

features are basic descriptors of the area curve, e.g. peak values, etc., while an additional 

set of seven features are extracted during the conversion of the area curve into a 

probability density function with derivable moments. 

Using Figure 19(a) as an example, the first set of features include the most 

probable time and area (tmp, Amp); the median time, area, and respective standard 

deviations (tmedian, Amedian, σt_median, σA_median); and the integrated fireball area during the 

detonation time ∆t,  

 ( ) ∫
∆+

=∆=
tt

t FB

event

event

dttAttAA )(  (12) 

where <A(t)> is the time average of the fireball size.  The second set of features involves 

fitting the area curve to a simple quadratic, f(t) = c1t
2 + c2t + c3, and converting the 
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resulting residuals ( data(t) – f(t) ) as shown in Figure 19(b) to a probability density 

function (P(t)) by normalizing the residual between the quadratic and the area data points, 

such that the minimum occurs at zero and the area under the curve is unity: 

 ( ) 0
min

=tP , and 

 1)( =∫
∆+ tt

t

event

event

dttP , (13) 

where ∆t represents the duration of the fireball.  A simple quadratic fit from the most 

probable area Amp to the last point above background does not represent a physical 

system.  Thus the pragmatic approach only aids in finding simple features that may help 

in discrimination.  These three fit parameters (c1, c2, c3) and the first four moments of the 

PDF (µ1, µ2, µ3, µ4) are the remaining seven features.  The first four moments are: 

 ( )∫ ⋅= dttPt  1µ , (14) 

 ( ) ( )∫ ⋅−= dttPt  2
12 µµ , (15) 

 ( ) ( )∫ ⋅−= dttPt  
1 3

12/3
2

3 µ
µ

µ , and (16) 

 ( ) ( )∫ ⋅−= dttPt  
1 4

12
2

4 µ
µ

µ , (17) 

where in each case, the theoretical integration limits are for all time, yet the practical 

limits with non-zero P(t) are tevent to tevent + ∆t.  All the feature values for imagery are 

provided in Appendix B. 
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Figure 19.  The extracted features from the fireball area AFB curves include simple 
observations of the area curve (figure a) and calculated moments of a 
probability density P derived from the residuals R between the data and 
a quadratic fit f of the data (figure b).  Pattern recognition techniques 
help prioritize which features are the most important in discriminating 
among the various types of explosives. 

 

C. Fisher discrimination, Feature saliency and stability measures of merit 

After feature extraction, the original M x N x frames pixel image is reduced to 

fourteen features.  Not all of these features will aid in classification, and of those that do, 
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only a few of the most important features are needed.  Various pattern recognition 

techniques are now employed to (1) determine the usefulness of imagery data for 

classification, (2) determine feature saliency (the ranking of features that best 

discriminate), (3) identify the minimum number of features needed to accurately classify 

among the various types of explosives, and (4) show that these features produce stable 

results in classification.  Stability is explicitly defined in a later section, but in general it 

refers to those features that consistently give (proven through robust testing) the best 

discrimination with the least amount of variation in class-conditional probability 

densities. 

The level of difficulty of this problem is exacerbated by a limited data set for each 

type and weight of explosive.  For example, the combined number of events between 

Brilliant Flash I and Brilliant Flash II is thirty nine.  Of those, the largest weight class is 

50 kg, consisting of twenty seven events, ten Type A and seventeen enhanced novel 

explosives (ENE).  For this reason, the problem is recast into two potentially more 

achievable objectives that pattern recognition techniques can exploit.  The first objective 

is to solve the classification problem with only two classes:  TNT and all ENE, all at 50 

kg weights.  The five classes for the second objective are TNT-10kg, TNT-50kg, 

TNT-100kg, ENE-50kg, and ENE-100kg. 

1. Two-class problem 

Beginning with the two-class problem, the desired features are those that best 

distinguish the two classes while preserving individual class grouping.  One pattern 

recognition approach to accomplish this objective is Fisher linear discrimination.  While 

the mathematics is described in [51:117-124] and [52:105-109], a simpler explanation 
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begins with a picture.  Suppose the data can be represented by two features, tmp and 

στ_median, and the scatter plot of the data values shown in Figure 20. 
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Figure 20.  A scatter plot of Brilliant Flash II data represented by two features, tmp 
and σt_median, shows individual class clusters (O = TNT, X = ENE) and 
an appropriate Fisher discrimination line (solid black line). 

 

The Fisher discrimination technique identifies the vector in the feature space that 

maximizes the differences in the class means and minimizes the class variances when the 

data is perpendicularly projected onto a line (Fisher line) defined by that vector.  Suppose 

that for class i the data projected onto the Fisher line is represented by the vector xi.  Then 
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one mathematical representation of a ratio (called a Fisher ratio), when maximized, 

defines the Fisher line as 

 

( )

∑

∑
≠

−
=

i
i

ji
ji

C

xx
D

FR
2

2

1

1

σ
, (18) 

where the average of the square of the class means differences (xi - xj) is the numerator 

and the average of the class variances is the denominator.  Here, D is the number of class 

mean differences and C is number of classes which have variance σi
2. 

The Fisher line is found either by a search method, an analytic method, or a least-

squares method [51: 240-242].  The search method is a global minimization challenge 

and is not adequate for the limited data-set under the current investigation.  For the two-

class problem, the analytic method is identical to the least-squares method except that the 

latter requires less computation time [51: 240-242]. 

The least-squares method treats the problem as a set of linear equations whose 

solution yields the Fisher line vector.  For example, let each row of X represent an event 

(N events) and each column represent a feature value (M features), excluding the first 

column of ones (N x M+1 matrix).  Suppose there are N1 events belonging to class 1 and 

N2 events belonging to class 2, with a total number of events N = N1 + N2.  Let each 

element in the target b have a target value that is either N/N1 or -N/N2 for class 1 or class 

2, respectively.  Then the linear equation to solve for the Fisher vector a is 

 [1  X]  a = b (19) 
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where a1 to aM defines the Fisher line a with a threshold weight w0 associated with the 

target values in b.  This equation has a solution 

 a = Y-1 b (21) 

when Y is nonsingular, or  

 a = (Yt Y)-1 Yt b (22) 

when Y is overdetermined.  The solution a is a (M+1 x 1) vector, and a/|a| represents 

relative importance among the M features.  A new event vector x (1 x M) belongs to class 

1 if the inner product [1  x] a is closer to N/N1; it belongs to class 2 if the inner product is 

closer to –N/N2. 

2. Class-conditional probability densities 

Once the Fisher line with the highest Fisher ratio is determined, probability 

density functions for each class are calculated along the Fisher line using kernel (or 

Parzen window) density estimation [52: 53-55].  The procedure begins by projecting each 

data point onto the Fisher line and determining the class means and standard deviations.  

A Gaussian distribution with a width equal to the class standard deviation is centered at 

each data point in the class.  The Gaussian distributions for all the points in a class are 

summed and divided by the number of points in the class to ensure that the total area 
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under the distribution curve is unity.  The result is a class-conditional probability density 

function, p(x|ci), e.g. the thick lines in Figure 21, defining the probability of an event 

having a value x given it is in class ci.  Once the correct Fisher line is determined, then 

any subsequent data can be projected onto this line and classified according to the Bayes’ 

decision rule for minimizing the probability of error. 

Bayesian decision theory provides the guidelines used to classify an event.  Duda, 

et al. explain this theory in general [51: 20-23], but an explanation using the current 

example will help solidify the concept.  Let each class be, c1 = ENE and c2 = TNT with 

equal a priori probabilities (or priors P) where their sum is one: P(c1) + P(c2) = 1.  Since 

there is an equal chance that the next event is either class, then P(ci) = ½.  However the 

probability predicting the next event is best described using Bayes’ formula, 

 ( ) ( ) ( )
)(

|
|

xp

cPcxp
xcP ii

i = , (23) 

where the a posteriori probability P(ci|x) (or posterior) is the probability that an event 

falling along the Fisher line at x is in class ci, for example, the thin lines in Figure 21.  

The posterior is directly proportional to p(x|ci), the likelihood of ci with respect to x (or 

the class-conditional probability density functions described earlier) and the a priori, 

P(ci).  The posterior is also inversly proportional to the evidence or scaling factor p(x) 

that ensures P(ci|x) sum to one.  Thus for the two-class problem with priors both equaling 

½, the evidence is 

 
( ) ( )

2

||
)( 21 cxpcxp

xp
+= . (24) 
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Figure 21.  Class-conditional probability density functions, p(x|ci), (left ordinate, 
thick lines) and posterior probabilities, P(ci|x), (right ordinate, thin 
lines) for each class ci (TNT dashed, ENE solid) are calculated along 
the Fisher line x using two features: tmp and σt_median.  The p(x|ci) are 
normalized such that the area under each curve is 1.0.  The posterior 
probabilities represent the total probability that an event with a certain 
value along the Fisher line is in one of the two classes, thus at every 
point along the Fisher line the posteriors sum to one.  For a Fisher line 
value x = 1.5, the probability the event is ENE is roughly 0.1, and that 
it is TNT is 0.9. 

 

Knowing the posterior, one applies Bayes’ decision rule for minimizing the 

probable error to generate appropriate classification and associated errors: 

 Decide c1 if P(c1|x) > P(c2|x); otherwise decide c2, (25) 

and where the probability of error is 

 P(error|x) = min[P(c1|x), P(c2|x)]. (26) 
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In addition to the Fisher ratio described earlier, another standard metric to capture 

the goodness of classification is area under the receiver operating characteristic or ROC 

curve.  While the Fisher ratio captures the means and variances of the class-conditional 

probability densities, the ROC includes integration of these density functions.  Thus the 

ROC captures probabilities of error in classification and the overall behavior of each 

likelihood.  By definition, a ROC curve, as shown in Figure 22(b), consists of the  
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Figure 22.  Figure (a) shows class-conditional likelihoods where the shaded areas 
represent the probability of a hit (red/light gray area) and the 
probability of false alarm (blue/dark gray area) as a function of decision 
threshold along x.  The resulting receiver operating characteristic curve 
in figure (b) shows the ordinate as the probability of hit, 
P(x є  RTNT | x є  cTNT), and the abscissa as the probability of false alarm, 
P(x є  RTNT | x є  cENE).  This example is generated using the single 
feature tmp and shows that the likelihoods cross at x ~ 0.5 and x << -6. 
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probability of false alarm (calling an event TNT when it is actually an ENE) along the 

abscissa and the probability of hit (accurately calling an event TNT) along the ordinate.  

The probability of a hit is 
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 (27) 

where R1 is defined as all x such that P(c1|x)>P(c2|x) as shown by the shaded areas in 

Figure 22(a), and the probability of a false alarm is defined as 
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 (28)  

3. Validation with leave-one-out and determining feature saliency 

One can use either the Fisher ratio or the total area under the receiver operating 

characteristic or ROC curve (AROC) and a leave-one-out process to determine the best 

features and their saliency.  The results are nearly the same with the Fisher ratio and the 

AROC.  The leave-one-out process is a validation step in which a single data point (an 

explosion event) is eliminated from the data (all the explosion events) before calculating 

the Fisher line, the Fisher ratio, the classification boundary, and the ROC.  This left-out 

data point is then used to validate the classification boundary by projecting it onto the 

Fisher line and comparing its classification with its actual class.  The percent of correctly 
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classified left-out data points is tracked along with the average of the Fisher ratios and 

AROCs. 

The leave-one-out process is a useful tool in determining the best features to use 

in classification.  When the leave-one-out process is applied to a set of features, then each 

feature set is sorted based upon importance.  Importance is measured a variety of ways.  

Some metrics available to sort the features include percent correctly classified, Fisher 

ratio, area under the ROC curve, probability of total error, and probability of error in a 

classification.  The standard metrics are the Fisher ratio and the AROC.  Again, the results 

using the current data set are the same whether the Fisher ratio or AROC is used.  There are 

two ways to apply this knowledge.  The first is to iterate through every combination of 

features starting with all possible one combinations (e.g. 14) and going through all 

possible 14 features.  This approach does not retain information about the previous 

iteration, but it does provide the best 1-, 2-, etc. feature combination sets for 

classification.  The resulting Fisher ratios for every combination of features are provided 

in Figure 23, where the feature combinations with the highest Fisher ratio are labeled and 

marked with an “X”.  

The second approach with the leave-one-out is the forward-back approach.  During the 

forward portion of this approach, one finds the best single feature; fixes it, then finds the 

next best feature, then the next, and so forth until a final set of rank ordered features is 

determined.  Figure 24 shows the result of this method when applied to the 14 features 

extracted from the near infrared camera.  In Figure (a), the Fisher ratio makes a 

significant improvement from ~10 to ~30 when the second feature is added; however, 

more features do not significantly contribute to improving the Fisher ratio until six or ten 
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features are used.  The use of this many features is addressed later with regard to stability.  

Since the AROC and probability of correct classification is tracked for each feature set, 

then one can observe the effect on discrimination by adding additional features.  This 

example clearly shows in figure (b) that within its uncertainty the AROC does not 

significantly improve by adding additional features.  The backward portion of a forward-

back approach is similar except one starts with all fourteen features and eliminates the 

single worst feature, one at a time.  The results of this approach are given in Figure 25. 
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Figure 23.  Examining every feature combination from one feature to all ten 
feature combinations provides one quantitative method to determine how 
many features are necessary for classification.  The "X" data points 
represent the N-feature combination with the highest Fisher ratio, F.  The 
remaining dots represent all the other N-feature combinations.  The 11 
through 14 feature combinations are not shown because they did not satisfy 
the 100% correctly classified criteria. 
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Figure 24.  Feature saliency is a product of leave-one-out and finding the best 
features with the highest Fisher ratio F (Fig. a) or area under the receiver 
operating characteristic (ROC) curve AROC (Fig. b).  Once the single best 
feature is determined, it is fixed while finding the next best feature.  The 
percent of iterations of the leave-one-out process that correctly classified the 
left-out event into one of the two possible classes is indicated, exept for those 
that are 100%.  The error bars represent the standard deviation of the mean F 
and mean AROC for each feature combination. 
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Figure 25.  Similar to Figure 24, Feature saliency is a product of leave-one-out 
and finding the best features with the highest Fisher ratio F (Fig. a) or highest 
AROC (Fig. b), except this time features are eliminated down from 14 to 1.  In 
this example, Amp was the first feature to be eliminated. 
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One measure of confidence in the selection of the best features is a strong 

correlation between the three approaches.  This however is not possible with the area 

derived feature set because many of the features are not independent of one another.  For 

this reason, once the number of features exceeds five or six, the improvement in Fisher 

ratios and AROCs decline and the stability worsens (discussed next).  Despite this 

handicap, the following findings are clear:  (1) the first four “best” features in Figure 24 

agree with the 1-, 2-, 3-, and 4-feature combinations with the highest Fisher ratio (Figure 

23), (2) the best single feature tmp agrees in all three approaches, and (3) the Fisher ratio 

and AROC stop improving significantly after two features. 

4. Stability of class-conditional probability densities 

In addition to the Fisher ratio, another metric to track is the stability of the class-

conditional probability densities for each iteration of the leave-one-out process.  In terms 

of stability, each pair of p(x|ci) should remain nearly constant during validation.  For 

example, Figure 21 actually shows the average class-likelihoods of all the iterations in the 

leave-one-out process when three features are examined.  Each individual class-

likelihood for the same examination is shown in Figure 26.  The vertical lines in this 

figure are the “left-out” events projected onto x and dashed according to the classification 

rules.  For example, any dashed vertical lines less than x = 1 would be incorrectly 

classified into the class shown with the solid lines.  In this example, all the left-out events 

are classified 100% correctly.  The average p(x|ci) is a Gaussian with its center and 

variance equal to the mean center and mean variance of all the densities generated by 

each leave-one-out training set.  Two measures for stability are the standard deviation of 

the center values and the standard deviation of the peak values for each individual p(x|ci).  
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As the standard deviations for a given feature set increase, the stability decreases.  For 

example, the results from the all-feature combinations approach and the forward-best 

features approach are given in Figure 27 and Figure 28, respectively.  They are similar in 

that the stability decreases as the number of features increases.  Even though the absolute 

values change only slightly, the results using the “best” features provide some insight.  

The σcenters suggests that the two features { tmp, σt_median } are more stable than a tmp alone 

or even the first three feature combinations.  On a similar note, σpeaks suggests that the 

first two features provide the best stability and the stability worsens as more features are 

included. 
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Figure 26.  Class-conditional probability density functions, p(x|ci), show the 
probability density of measuring a particular Fisher line value x given 
the event is in one of two classes, c1 = ENE (—) and c2 = TNT (- - -).  
This Fisher line is determined by maximizing the Fisher ratio using two 
features:  tmp and σt_median.  The densities are normalized, thus the area 
under each curve is unity.  The dots (·) are events used in training. 
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Figure 27.  The mean standard deviation of (a) the peak centers, σcenters, and (b) 
the peak values, σpeaks, from each pair of individual p(x|ci) and from 
each leave-one-out iteration is a useful metric to quantify p(x|ci) 
stability as a function of number of features.  The number of features Nf 
is indicated on the abscissa and the data points represent each 
combination of N-features.  The "X" data points represent the N-feature 
combination with the highest Fisher ratio.  Notice, as the number of 
features increase the stability decreases or σ’s increases. 

 

Combining the stability and Fisher ratio metrics, one possible conclusion is to use 

the most probable time and the standard deviation of the median time as the two features 

for classifying between TNT and ENE at the 50-kg weight.  The corresponding average 

and individual class-conditional probability densities (or likelihoods) are provided in 

Figure 21 and Figure 26, respectively.  The corresponding two-dimensional feature set 

scatter plot is given in Figure 20.  For reference, the densities for the set { tmp, σt_median , 

tmedian } are shown in Figure 29 and for the single tmp feature are provided in Figure 30. 
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Figure 28.  Similar to Figure 27, the center (a, c) and peak (b, d) standard 
deviations of the likelihoods are calculated for each feature 
combination derived from the "best" features shown in Figure 24.  The 
standard deviations are normalized by the separation between the class-
conditional densities.  The colors are described in Figure 24’s caption. 
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Figure 29.  Class-conditional probability density functions, p(x|ci) or likelihoods, 
for the three-feature set { tmp, σt_median , tmedian} show the probability 
density of measuring a particular Fisher line value x given the event is 
in one of two classes, c1 = ENE and c2 = TNT.  This Fisher line is 
determined by maximizing the Fisher ratio using the three features.  
The density functions are normalized, and thus the area under each 
curve is 1.0.  Figure (a) has each p(x|ci) from the leave-one-out process 
where the vertical lines are the “left-out” events projected onto x and 
colored according to the classification rules.  Figure (b) contains the 
average p(x|ci) along with confidence intervals. 
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Figure 30.  Same as Figure 29 except the features set is a single feature:  tmp. 
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D. Testing 

The discussion and analysis to this point exploit only near-infrared imagery from 

Brilliant Flash II which suggests that the following two features are recommended to 

achieve the objective of stable classification: the most probable time and the standard 

deviation of the median time.  Before examining the three-chip color images for key 

features (Section IV-0), two scenarios are now employed to test the near-infrared 

features’ classification performance.  The first uses the Brilliant Flash II data as the 

training and validation data and the Brilliant Flash I data as the test data.  The second 

scenario combines both the test series, selects a random five events as the test data and 

uses the remaining events as the training set.  At least four additional random choices or 

test cases are examined.  Repeatedly choosing a random set for testing is called 

“bootstrapping.” [51: 474]  The five outcomes of the bootstrapping test provide insight 

into the most important features independent of test data.  These features are further 

examined during robust testing (Section IV-G). 

1. Testing with Brilliant Flash I data 

Using Brilliant Flash I as a test case to evaluate the class-conditional probability 

densities derived in the previous section yields a 82% accuracy in classification when 

using the single feature { tmp }, 64% for { tmp, σt_median }, and 27% for 

{ tmp, σt_median, σA_median }.  The two-feature set doubles the Fisher ratio and increases the 

area under the ROC curve (AROC) to one.  Even with these improvements, the percent of 

the Brilliant Flash I events that are correctly classified decreases to 64%.  Additional 

features provide little or no improvement in the Fisher ratio or the AROC as shown in 

Table 10 and Figure 31.  The class-conditional probabilities and posteriors for the sets 



www.manaraa.com

 

63 

{ tmp} and {tmp, σt_median } given in Figure 32 show increased class separation and 

likelihood stability using two features for discrimination. 

 

Table 10.  Record of test results where Brilliant Flash II data is the training data 
and Brilliant Flash I is the testing data.  FR is the Fisher ratio.  AROC is 
the area under the receiver operating characteristic curve.  σ is the 
standard deviation. 

Training 
Set 

Testing 
Set 

Best 5 
Forward 
Features 

FR σσσσFR AROC σσσσAROC % 
Correct 

Best 5 
Backward 
Features 

Brilliant 
Flash II 

Brilliant 
Flash I 

tmp 
σt_median 
σA_median 

c2 

Amedian 

tmedian 
A 
c3 
µ2 

µ4 

Amp 

c1 

µ3 
µ1 

12 
33 
59 
79 
96 
211 
612 
882 
* 
* 
* 
* 
* 
* 

0.9 
7 
33 
40 
37 
98 
123 
436 
* 
* 
* 
* 
* 
* 

0.992 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.004 
0.001 

<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

0.2 
0.002 
0.002 

82 
64 
27 
45 
73 

σt_median 
Amedian 

c2 

µ1 
µ4 

tmp 
tmedian 

c3 
A 
µ2 

Amp 

µ3 
c1 

σA_median 
 

It is important to remember that these features are parametric and not physical.  

Many of them could be represented by linear (or possibly non-linear) combinations of 

other features.  These tools, even with the small amount of test data, provide a 

mechanism to determine those few features that provide the best classification.  

Specifically, the drop in the testing performance may be analogous to adding additional 

features to a curve fitting problem:  the more terms you add, the better the fit goes 

through the data, yet the prediction performance potentially declines. 
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Figure 31.  Resulting feature saliency measured by the Fisher ratio when using all 
of Brilliant Flash II data for training and all of Brilliant Flash I for 
testing.  The colors are described in the caption for Figure 24. 
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Figure 32.  Class-conditional likelihoods p(x|ci) resulting from the feature sets 

{ tmp} (Figs. a and b) and {tmp, σt_median} (Figs. c and d) using Brilliant 
Flash II data for training and Brilliant Flash I data for testing.  Figures 
(a) and (c) contain the individual likelihoods generated during training 
and validation using leave-one-out.  Figures (b) and (d) contain the 
average of the training likelihoods with confidence intervals.  Solid 
=ENE; dashed = TNT. 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
(c) (d) 

F 

tmp σt_median σA_median c2 Amedian tmedian A 
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2. Bootstrapping with combined Brilliant Flash tests 

Combining Brilliant Flash I and Brilliant Flash II data gives 26 50-kg events from 

which the “bootstrap” method is applied.  The bootstrap data consists of 21 random 

events for training and validation purposes and of 5 random events for testing.  Using the 

21 training events, the forward-back and leave-one-out techniques are employed to 

determine feature saliency and appropriate class-conditional probability density functions 

and posteriors.  Each test event is classified according to the class-conditional posteriors 

generated by the training data for the best single feature, the best two-feature 

combination, and so forth, up to the best five-feature combination.   

The results of five independent test scenarios are provided in Table 11 for the best 

features ranked by the area under the ROC (AROC) curve.  Identical results are obtained 

when the best features are ranked by the Fisher ratio.  Overall, the Fisher ratios and AROCs 

are much worse than when only the Brilliant Flash I data was the test case; however, the 

performance of the test cases are significantly better, e.g. 80% to 100% correct versus 

82% down to 27% in the previous test scenario.  Nevertheless, the bootstrap results 

suggest that the tmp feature provides the needed stability along with adequate 

classification capability as visually represented in Figure 33.   

With only a slight degrade (1 in 5) in classification stability between test cases, 

the two-feature set {tmp, µ3} provides a marginal improvement in classification shown by 

the Fisher ratio increase of about one and by the class-conditional probability densities in 

Figure 34.  This figure also contains the two dimensional scatter plot of the events as a 

function of µ3 vs tmp.  The shallow Fisher line slope is another indication that tmp alone 

may be sufficient to classify the two classes. 
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Table 11.  Selecting a random set of five events from two test series, Brilliant 
Flash I and Brilliant Flash II, as the test set and using the remaining 
events for training and validation yields the following results in the 
percent of the test set that was classified correctly (last column) based 
upon a feature set sorted by the best area under the receiver operating 
characteristic curve (AROC).  tmp is consistently the “best” feature 
derived from the forward-back routine.  FR is the Fisher ratio.  σ is the 
standard deviation. 

Random 
Choice 

Test 
Types 

Test 
Series 

Test 
Event 
No. 

Best 5 
Forward 
Features 

FR σσσσFR AROC σσσσAROC % 
Correct 

1 TYPED 
TNT 

TYPEB 
TYPEB 
TYPEB 

BFI 
BFII 
BFII 
BFII 
BFII 

29 
24 
13 
15 
12 

tmp 
µµµµ3333 
c2 

Amp 
Amedian 

2.0 
3.2 
5.9 
6.9 
11 

0.4 
0.5 
0.9 
0.9 
2 

0.84 
0.90 
0.96 
0.97 
0.99 

0.02 
0.02 
0.02 
0.01 
0.01 

100 
100 
80 
100 
80 

2 TNT 
TNT 

TYPED 
TNT 
TNT 

BFII 
BFII 
BFII 
BFII 
BFI 

43 
30 
18 
39 
23 

tmp 
µµµµ3333 
c1 

tmedian 
Amp 

1.0 
1.9 
2.6 
3.3 
4.1 

0.4 
0.4 
0.6 
0.5 
0.6 

0.76 
0.83 
0.87 
0.90 
0.92 

0.03 
0.02 
0.02 
0.02 
0.02 

100 
100 
100 
100 
100 

3 TYPEC 
TNT 

TYPEB 
TNT 

TYPED 

BFI 
BFII 
BFII 
BFI 
BFI 

2 
43 
12 
25 
18 

tmp 
c1 
µµµµ3333 
A 
µ4 

3.1 
8 
10 
14 
15 

0.9 
1 
1 
2 
3 

0.89 
0.98 
0.988 
0.996 
0.997 

0.03 
0.01 
0.009 
0.007 
0.007 

80 
60 
60 
60 
60 

4 TYPED 
TNT 

TYPEC 
TNT 
TNT 

BFI 
BFII 
BFII 
BFII 
BFI 

19 
39 
8 
24 
31 

tmp 
µµµµ3333 
c1 
A 

tmedian 

1.4 
2.7 
3.2 
4.0 
4.1 

0.4 
0.4 
0.6 
0.7 
0.7 

0.79 
0.88 
0.90 
0.92 
0.92 

0.03 
0.02 
0.02 
0.02 
0.02 

100 
80 
100 
100 
100 

5 TNT 
TYPEC 
TYPEC 
TYPED 
TYPED 

BFI 
BFII 
BFII 
BFI 
BFI 

23 
8 
9 
19 
30 

tmp 
µµµµ3333 

σt_median 
c1 

Αmp 

2.2 
3.7 
4.7 
5.3 
6 

0.5 
0.5 
0.7 
0.9 
1 

0.85 
0.91 
0.94 
0.95 
0.95 

0.02 
0.02 
0.02 
0.02 
0.02 

100 
80 
80 
100 
100 
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Figure 33.  Class-conditional likelihoods p(x|ci) resulting from the feature set 
{ tmp} using the first bootstrap data indicated in the first row of Table 
11.  Figure (a) contains the individual likelihoods generated during 
training and validation using leave-one-out.  Figure (b) contains the 
average of the training likelihoods and the confidence intervals.  Solid 
=ENE; dashed = TNT. 

 

The bootstrap results also provide some guidance as to which features are 

consistently ranked high in discriminator importance—irregardless if they are necessary 

for classification.  These results suggest that one feature saliency list may be { tmp, µ3, c1, 

Amp }.  Forcing this feature list on all the combined Brilliant Flash I and II data results in 

around 85% classification performance as shown in Figure 35 where the measures of 

merit are again the Fisher ratio and the AROC.  

E. Applying discrimination tools to Cannon 3-chip color images 

The tools described in the previous section are now employed to examine the 

images from a Cannon XL1 3-chip camera which simultaneously recorded the same 

events as the NIR camera above.  The next section explores the combined features sets 

from both cameras.  At 30 Hz, the Cannon camera records the images onto three sections 

of the CCD, one for each primary color (RGB).  During post processing, these colors are 

independently extracted to obtain RGB images as a function of time from which features 

(a) (b) 
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are extracted.  Like the NIR image processing, the histogram for each color image is 

exploited to generate an appropriate area as a function of time, each of which is displayed 

in Figure 36 (for Brilliant Flash II series) and Figure 37 (for Brilliant Flash I series). 
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Figure 34.  Class-conditional likelihoods p(x|ci) resulting from the feature set {tmp, 
µ3} using the first bootstrap data indicated in the first row of Table 11.  
Figure (a) contains the individual likelihoods generated during training 
and validation using leave-one-out.  Figure (b) contains the average of 
the training likelihoods and the confidence intervals.  Figure (c) 
displays the events features on a two dimensional scatter plot.  Solid 
(X) = ENE; dashed (O) = TNT. 
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Figure 35.  A subjective evaluation of the five test cases’ results using AROC 
suggests the best features shown in this figure.  Using this set and order 
of features, each test case is evaluated and the resulting (a) Fisher ratio 
and (b) AROC are displayed here as a function of the feature set.  Each 
feature set beyond tmp alone has less than 22 out of the 26 events 
(<85%) classified correctly during the leave-one-out.  Using only tmp, 
23 of the 26 events (88%) are classified correctly. 

 

In both series, the area in the blue band is shorter lived and smaller than the other 

colors.  Type A is reproducible within 10-12% in the red and green bands; whereas the 

area in the blue band for Type A varies up to 67%.  With exception to a few outliers, 

Type B is reproducible within 25-50% and Type C is reproducible within 7-15% across 

each color band.  Type D is reproducible within 17-30%.  In general, the areas for each 

color band originating from the Brilliant Flash I test series are less reproducible, e.g. 22% 

to 90% in variations.  While Type D shows most reproducible in Brilliant Flash II tests, it 

is the least reproducible in Brilliant Flash I. 

Two test scenarios are now employed with two defined classes:  Type A as TNT 

and Types B through D as ENE.  The first test uses the Brilliant Flash II data as the 

training and validation data and the Brilliant Flash I data as the test data.  The second test  

(a) (b) 

F AROC 
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Figure 36.  The 3-chip color area plots shown here aid in feature extraction and 
provide an overview of their potential to distinguish TNT from the 
enhanced explosives detonated in the Brilliant Flash II.  The two-class 
discrimination problem groups Types B through D into one class called 
ENE. 
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Figure 37.  The 3-chip color area plots shown here aid in feature extraction and 
provide an overview of their potential to distinguish TNT (Type A) 
from the enhanced explosives (Types C and D) detonated in the 
Brilliant Flash I series.  Type B was not tested in Brilliant Flash I. 

 

scenario is bootstrapping which combines both test series, selects a random five events as 

the test data and uses the remaining events for training.  Five test cases are examined. 

1. Testing with Brilliant Flash I data 

Using only the events common to both the NIR and 3-chip recorded events, Brilliant 

Flash II 3-chip data is used for training and Brilliant Flash I 3-chip data is used for 
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testing.  The resulting percent of correctly classified test data along with the classification 

statistics of Fisher ratio and AROC are presented in Table 12.  These results show less  

 

Table 12.  Record of Cannon 3-chip data test results where Brilliant Flash II data 
is the training data and Brilliant Flash I is the testing data.  Feature 
saliency is found by ranking with the Fisher ratio (FR).  AROC is the area 
under the receiver operating characteristic curve.  σ is the standard 
deviation.  The RGB is in parenthases. 

Training 
Set 

Testing 
Set 

Best 5 
Forward 
Features 

FR σσσσFR AROC σσσσAROC % 
Correct 

Brilliant 
Flash II 

Brilliant 
Flash I 

Amp(B) 
tmedian(R) 

µ3(B) 
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tmedian(B) 
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47 
97 
167 
283 

1 
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13 
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0.95 
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0.02 
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91 
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82 
82 
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Figure 38.  The best features, ranked by their (a) AROC or (b) Fisher ratio F, are 
generated for the 3-chip images.  Once a feature is determined as best, 
it is fixed before finding the next best feature.  The data points 
represent the mean and standard deviation from the leave-one-out 
process. 

 

classified correctly events from the test set as additional features are included into the 

discrimination model despite an increase in class separation and clustering as quantified 

(a) (b) 

AROC F 
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by the Fisher ratio and AROC.  As Figure 38 shows, the AROC stops improving after two 

features and the Fisher ratio has significantly improved.  While adding a third feature 

improves the Fisher ratio, it marginally improves the ROC performance.  With regards to 

the stability of the class-conditional densities represented in Figure 39, more features 

cause the density center stability to decline.  Likewise, only two features are necessary to 

maximize the density peak stability.  These effects are directly observed in the actual 

densities, e.g., the densities derived from the first two feature sets are given in Figure 40. 
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Figure 39.  The mean standard deviation of the peak (a) centers, σcenters, and (b) 
the values, σpeaks, from each pair of p(x|ci) and from each leave-one-out 
iteration quantifies p(x|ci) stability as a function of number of features. 

 

2. Bootstrapping with combined Brilliant Flash tests 

Combining Brilliant Flash I and Brilliant Flash II data gives 26, 50-kg events 

from which “bootstrap” data is generated.  The bootstrap data consists of 21 random 

events for training and validation purposes and of 5 random events for testing.  With 26 

total events, there are 65,780 possible permutations to select 5 random events for testing.  

Using the 21 training events, the forward-back and leave-one-out techniques are  
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Figure 40.  Class-conditional likelihoods p(x|ci) resulting from the feature sets (a) 
{ Amp(B) } and (b) { Amp(B), tmedian(R) } using the Brilliant Flash II 
series as the training set.  The left column contains the individual 
results from the leave-one-out; the right column is the average 
likelihoods and corresponding confidence intervals.  The solid lines are 
ENE; the dashed lines are TNT. 

 

employed to determine feature saliency and appropriate class-conditional probability 

density functions and posteriors.  Each test event is classified according to the class-

conditional posteriors generated by the training data for the best single feature, the best 

two-feature combination, and so forth, up to the best five-feature combination.  The 

results of five independent test scenarios are provided in Table 13 for the best features 

ranked by the Fisher ratio.  The results for the best features ranked by the area under the 

receiver operating characteristic curve (AROC) are nearly identical.  Overall, the Fisher 

(a) 
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ratios, AROCs, and performance show little or no improvement over the previous case 

where only the Brilliant Flash I data was the test case.  Additionally, the bootstrap results 

suggest that no single feature or set of features provides the needed stability and 

classification capability to distinguish TNT from ENE when using only the 3-chip color 

images.   

Table 13.  Record of Cannon 3-chip data bootstrapping test results where Brilliant 
Flash I and II data are combined and a random set of five events are 
chosen to be test data.  The best features are sorted by their Fisher ratio.  
FR is the Fisher ratio.  AROC is the area under the receiver operating 
characteristic curve.  σ is the standard deviation. 

Random 
Choice 

Test 
Types 

Test 
Series 

Test 
Event 
No. 

Best 5 
Forward 
Features 

FR σσσσFR AROC σσσσAROC % 
Correct 

1 TYPED 
TNT 

TYPEB 
TYPEB 
TYPEB 

BFI 
BFII 
BFII 
BFII 
BFII 

29 
24 
13 
15 
12 

σA_median(B) 
σA_median(G) 

tmp(B) 
µ2(B) 
µ2(R) 

10 
15 
24 
27 
34 

2 
4 
8 
11 
14 

0.988 
0.997 
1.000 
1.000 
1.000 

0.010 
0.008 
0.004 
0.003 
0.002 

60 
40 
60 
60 
60 

2 TNT 
TNT 

TYPED 
TNT 
TNT 

BFII 
BFII 
BFII 
BFII 
BFI 

43 
30 
18 
39 
23 

Amp(B) 
A(B) 
µ2(B) 
c2(B) 
µ1(G) 

5.6 
12 
21 
29 
36 

0.5 
1 
2 
4 
10 

0.953 
0.993 
0.999 
1.000 
1.000 

0.010 
0.005 
0.003 
0.001 
0.001 

60 
60 
60 
60 
60 

3 TYPEC 
TNT 

TYPEB 
TNT 

TYPED 

BFI 
BFII 
BFII 
BFI 
BFI 

2 
43 
12 
25 
18 

c3(B) 
A(B) 

Amp(B) 
µ2(B) 
c1(B) 

6.6 
11 
15 
18 
25 

0.6 
1 
2 
5 
11 

0.964 
0.991 
0.997 
0.998 
1.000 

0.010 
0.008 
0.006 
0.007 
0.005 

60 
60 
60 
80 
80 

4 TYPED 
TNT 

TYPEC 
TNT 
TNT 

BFI 
BFII 
BFII 
BFII 
BFI 

19 
39 
8 
24 
31 

Amp(B) 
A(B) 

tmp(G) 
µ2(G) 
c2(B) 

5.5 
11 
14 
22 
26 

0.5 
1 
2 
5 
11 

0.951 
0.990 
0.996 
0.999 
1.000 

0.010 
0.008 
0.005 
0.004 
0.005 

100 
80 
80 
80 
60 

5 TNT 
TYPEC 
TYPEC 
TYPED 
TYPED 

BFI 
BFII 
BFII 
BFI 
BFI 

23 
8 
9 
19 
30 

Amp(B) 
A(B) 

tmp(G) 
µ2(G) 
c2(B) 

5.8 
11 
18 
36 
50 

0.5 
1 
2 
4 
7 

0.96 
0.990 
0.999 
1.0000 
1.0000 

0.01 
0.008 
0.004 
0.0003 
0.0001 

80 
80 
60 
60 
60 
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Using the results of the five test cases, a subjective choice of best features could 

be { Amp(B), A(B), µ2(B), tmp(G) }.  Fixing this order and computing the Fisher ratio and 

the AROC for each one-, two-,… feature combination yields the results shown in Figure 

41.  Here, the AROC stops improving after adding A(B) while the FR continues to improve  
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Figure 41.  A subjective evaluation of the five test cases’ results using the 3-chip 
data suggests the best features shown in this figure.  Using this set and 
order of features, each test case is evaluated and the resulting (a) Fisher 
ratio and (b) AROC are displayed here as a function of the feature set. 

as more features are added.  With regard to stability, the optimum set is possibly 

{ Amp(B), A(B) } according to Figure 42 and Figure 43.  Overall, an improvement in  
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Figure 42.  Class-conditional likelihoods p(x|ci) resulting from the feature sets (a) 
{ Amp(B) } and (b) { Amp(B), A(B) } using the second bootstrap result in 
Table 13.  Each density is a result from the leave-one-out. 
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(a) (b) 
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classification is achieved by utilizing the blue band image data.  Possibly the best visible 

features which help in discrimination are from the blue band where the maximum fireball 

area and the area integrated over time is unique for ENE and TNT.  Recall that TNT is 

observed to have a short duration and a small intensity in this band (refer to Figure 36 

and Figure 37 for the area plots). 
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Figure 43.  The mean standard deviation of (a) the peak centers, σcenters, and (b) 
the peak values, σpeaks, from each pair of individual p(x|ci) and from 
each leave-one-out iteration quantifies p(x|ci) stability as a function of 
number of features. 

 

F. Applying discrimination tools to combined NIR and 3-chip images 

Combining the NIR and the 3-chip color images into one data set gives 14 

features for each of the four color bands (56 total features).  The results of the two types 

of tests, (1) train with Brilliant Flash II and test with Brilliant Flash I and (2) 

bootstrapping with five test cases, are provided in Table 14 where the best features are 

sorted by the Fisher ratio.  The results where the best features are sorted by the area under 

the receiver operating characteristic curve are almost identical to the Fisher ratio results, 

thus are not repeated in another table.  The findings here suggest that more features  
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Table 14.  Test results of combining NIR and Cannon 3-chip data for (1) Brilliant 
Flash (BF) II training and BF I testing and (2) combined BF I and BF II data 
with a random set of five test events.  The best features are sorted by their 
Fisher ratio (FR), followed by the AROC.  σ is the standard deviation.  The 
RGB is in parenthases.  No RGB letters signifies a NIR feature. 

Random 
Choice 

Test 
Types 

Test 
Series 

Test 
Event 
No. 

Best 5 
Forward 
Features 

FR σσσσFR AROC σσσσAROC % 
Correct 

NA  All 
BFI 

 tmp 
σt_medstd 
Amp(B) 
Amp(G) 
tmedian 

12 
33 
90 
211 
1666 

1 
7 
29 
66 
148 

0.992 
1.000 
1.000 
1.000 
1.000 

5Ε−03 
8Ε−04 
3Ε−07 
5Ε−15 
1Ε−15 

82 
64 
64 
64 
64 

1 TYPED 
TNT 

TYPEB 
TYPEB 
TYPEB 

BFI 
BFII 
BFII 
BFII 
BFII 

29 
24 
13 
15 
12 

σA_medstd(B) 
σA_medstd(G) 

tmp(B) 
tmp 

σt_medstd(B) 

10 
15 
24 
32 
40 

2 
4 
8 
7 
18 

0.988 
0.997 
1.000 
1.000 
1.000 

0.010 
0.008 
0.004 
0.001 
0.0007 

60 
40 
60 
60 
60 

2 TNT 
TNT 

TYPED 
TNT 
TNT 

BFII 
BFII 
BFII 
BFII 
BFI 

43 
30 
18 
39 
23 

Amp(B) 
A(B) 
µ2(B) 
c2(B) 
µ1(G) 

5.6 
12 
21 
29 
36 

0.5 
1 
2 
4 
10 

0.953 
0.993 
0.999 
1.000 
1.000 

0.010 
0.005 
0.003 
0.001 
0.001 

60 
60 
60 
60 
60 

3 TYPEC 
TNT 

TYPEB 
TNT 

TYPED 

BFI 
BFII 
BFII 
BFI 
BFI 

2 
43 
12 
25 
18 

c3(B) 
A(B) 

Amp(B) 
tmp 

tmedian(B) 

6.6 
11 
15 
21 
52 

0.6 
1 
2 
2 
7 

0.964 
0.991 
0.997 
0.999 
1.000 

0.010 
0.008 
0.006 
0.003 

0.00006 

60 
60 
60 
80 
60 

4 TYPED 
TNT 

TYPEC 
TNT 
TNT 

BFI 
BFII 
BFII 
BFII 
BFI 

19 
39 
8 
24 
31 

Amp(B) 
A(B) 

tmp(G) 
µ2(G) 
c2(B) 

5.5 
11 
14 
22 
26 

0.5 
1 
2 
5 
11 

0.951 
0.990 
0.996 
0.999 
1.000 

0.010 
0.008 
0.005 
0.004 
0.005 

100 
80 
80 
80 
60 

5 TNT 
TYPEC 
TYPEC 
TYPED 
TYPED 

BFI 
BFII 
BFII 
BFI 
BFI 

23 
8 
9 
19 
30 

Amp(B) 
A(B) 

tmp(G) 
µ2(G) 
c2(B) 

5.8 
11 
18 
36 
50 

0.5 
1 
2 
4 
7 

0.96 
0.990 
0.999 
1.0000 
1.0000 

0.01 
0.008 
0.004 
0.0003 
0.0001 

80 
80 
60 
60 
60 

 

actually degrade the stability of the feature saliency.  While a few 3-chip features provide 

higher Fisher ratios than the NIR feature tmp, these color features are inconsistently 
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ranked according to their Fisher ratio and their AROC.  Nevertheless, the pair of features, 

Amp(B) and A(B) show up most frequently. 

G. Committee of classifiers for robust testing two-class discrimination 

At this point, feature saliency and stability has been examined using features 

extracted from near-infrared images, from RGB color images, and from the combination 

of NIR and RGB images which provide four color images.  Before conclusions are drawn 

based upon limited testing it is important to robustly test the findings.  The approach for 

robust testing utilizes Bishop’s committee of networks [52: 364-365] approach, but in 

this problem it is more appropriately called a committee of classifiers.  The motivation to 

use a committee is to overcome the drawbacks of isolated pattern recognition on subsets 

of the data.  The previous results from the NIR and 3-chip color features show that the 

feature saliency depends on the training set used, e.g. Brilliant Flash II or one of many 

test sets in the bootstrap method.  A common practice is to select the training set and 

spectral bands that have the best performance on the independent test set.  As Bishop 

points out, two drawbacks of this approach are the loss of information gained with other 

training sets and the noise in the data being ignored such that the best performance with a 

training set might not have the best performance on a new set of test data. 

Using a committee of classifiers approach to robust testing, one first selects a list 

of features based upon the results from individual tests using the NIR, 3-chip, and 

combined NIR/3-chip data.  This selection process is the first committee.  Based upon the 

results in the previous sections and constrained by stability in feature saliency and 

probability density functions, the features that are potentially the best in distinguishing 

between TNT and ENE at the 50-kg weight include tmp, σt_medstd, Amp(B), A(B), and 
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tmedian(R).  Once a set of features is selected, then the second committee robustly tests 

each feature and where appropriate, combinations of multiple features.  Since the 

previous results imply that stability degrades as more features are added, then the robust 

test combinations are currently limited to two feature combinations.  The robust test 

method used in this analysis is based upon a bootstrap approach.  For example, suppose 

there are 40 events, then there are 658,008 possible ways to create a test set using five of 

those events.  The robust test randomly chooses 1,000 of these test sets and 

corresponding training sets and computes the average probability densities from all 1,000 

training sets.  The resulting densities statistically represent all 658,008 possible 

permutations with representative means and variances. 

The last step is to report the classification performance as a percentage of the 40 

events that are classified correctly using these average densities.  These percentages are 

reported in the following tables, where each one represents the results of applying the 

discrimination tools to weights 50-kg, 100-kg, and all weights 10 to 100 kg.   

 

Table 15.  Percentages of the 50-kg events that are correctly classified using a 
selected set of feature(s).  The diagonal values represent single feature 
discrimination and the off-diagonal values represent two-feature 
discrimination between types. 

50kg t mp Amp(B) A(B) tmedian (R) σσσσt_median 

tmp 89% 85% 85% 93% 89% 

Amp(B) 85% 93% 93% 85% 100% 

A(B) 85% 93% 89% 78% 89% 

tmedian (R) 93% 85% 78% 67% 67% 

σσσσt_median 89% 100% 89% 67% 74% 
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Table 16.  Percentages of the 100-kg events that are correctly classified using a 
selected set of feature(s).  The diagonal values represent single feature 
discrimination and the off-diagonal values represent two-feature 
discrimination between types. 

100kg t mp Amp(B) A(B) t median (R) σσσσt_median 

tmp 89% 100% 100% 100% 100% 

Amp(B) 100% 89% 89% 100% 100% 

A(B) 100% 89% 89% 100% 100% 

tmedian (R) 100% 100% 100% 100% 100% 

σσσσt_median 100% 100% 100% 100% 67% 

 

Table 17.  Percentages of the weight independent events that are correctly 
classified using a selected set of feature(s).  The diagonal values 
represent single feature discrimination and the off-diagonal values 
represent two-feature discrimination between types. 

10,50,100 kg t mp Amp(B) A(B) t median (R) σσσσt_median 

tmp 87% 87% 87% 90% 87% 

Amp(B) 87% 79% 85% 82% 85% 

A(B) 87% 85% 79% 82% 85% 

tmedian (R) 90% 82% 82% 62% 54% 

σσσσt_median 87% 85% 85% 54% 59% 

 

Due to the small numbers of 10-kg and 100-kg events, only a leave-one-out 

process is used to generate those respective percentages.  The feature pair, Amp(B) and 

σt_medstd (NIR), is 100% accurate in predicting an event as either TNT or ENE at a priori 

weight of 50 kg; however, a single feature performs almost as well.  For example, tmp, 

Amp(B) and A all perform at approximately 90% accuracy if the weight is known a priori 

to be 50 kg.  The time to the peak of the fireball area in the near-infrared provides a 

Fisher ratio F = 2.9±0.3, represented by the separation in the class-conditional Posteriors 

and densities calculated during the robust testing (Figure 44).  Even though the reported 

performance is sufficiently high, the range of densities from the 997 test scenarios clearly 

shows a region of high uncertainty in the range of -1.5 to 0 along the abscissa.  Upon 
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examining the 4,985 test scenarios, only 87% or 4,346 provided correct classification.  

This feature is also the single best discriminator when weight is unknown (Figure 45):  

87% accuracy, F = 2.5±0.1, and 87% of 5,000 classified correctly.   
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Figure 44.  (a) The range of possible class-conditional posteriors as a result of 997 
tests and (b) the 997 class-conditional probability densities from robust 
testing for the feature tmp which provides an 89% accurate prediction of 
events as either ENE or TNT when weight is known to be 50 kg.  The 
Fisher ratio is 2.9±0.3 for the average densities.  The vertical lines 
represent locations along the Fisher line, x, for each test event.  Solid = 
ENE; dashed = TNT. 
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Figure 45.  (a) The range of possible class-conditional posteriors as a result of 997 
tests and (b) the 997 class-conditional probability densities from robust 
testing for the feature tmp which provides an 87% accurate prediction of 
events as either ENE or TNT when weight is unknown.  The Fisher 
ratio is 2.5±0.1 for the average class-conditional densities.  The vertical 
lines represent locations along the Fisher line, x, for each test event.  
Solid = ENE; dashed = TNT. 

(a) (b) 

(a) (b) 
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The single best feature from the 3-band visible imagery is the maximum area in 

the blue band, Amp, of 10 – 60 m2 for TNT and 40 – 280 m2 for ENE.  This feature 

provides 93% correct classification using the average densities from the test results (91% 

of 4,985) and F = 5.4±0.2 for the 50 kg case (Figure 46).  Similarly as shown in Figure 

47 for the unspecified weights case, this feature provides 79% correct classification using 

the average densities from the test results (80% of 5,000 test cases) and F = 4.4±0.1.  

Combining the time to peak size in the near IR and maximum area in the blue does not 

significantly improve the classification performance. 
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Figure 46.  (a) The range of possible class-conditional posteriors as a result of 997 
tests and (b) the 997 class-conditional probability densities from robust 
testing for the feature Amp(B) which provides an 93% accurate 
prediction of events (ENE or TNT) when weight is known to be 50 kg.  
The Fisher ratio is 5.4±0.2 for the average class-conditional densities.  
The vertical lines represent locations along the Fisher line, x, for each 
test event.  Solid = ENE; dashed = TNT. 

 

H. Multiple-class discrimination 

The previous sections address only one weight (50 kg) collected during the 

Brilliant Flash tests; however, the test series collected image data from various weights of  
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Figure 47.  (a) The range of possible class-conditional posteriors as a result of 997 
tests and (b) the 997 class-conditional probability densities from robust 
testing for the feature Amp(B) which provides an 79% accurate 
prediction of events (ENE or TNT) when weight is unknown.  The 
Fisher ratio is 4.4±0.1 for the average class-conditional densities.  The 
vertical lines represent locations along the Fisher line, x, for each test 
event.  Solid = ENE; dashed = TNT. 

 

TNT and ENE explosives.  Enough repetitions of five types allow an application of a 

multi-class Fisher discrimination technique:  {TNT10, TNT50, TNT100, ENE50, ENE100} 

where the numbers represent the weight in kilograms.  This subsection explains the 

theory of multiple-class Fisher discrimination, presents the fireball area data of the five 

candidate classes, identifies potential scaling relationships of the features and their use in 

classification, reports the feature saliency results of using a five-class discriminator tool 

to examine the two test scenarios discussed earlier, and finally presents the results of a 

committee of classifiers approach to solving the five-class problem. 

The five-class discrimination tools first use all Brilliant Flash II for training and 

Brilliant Flash I for testing.  Since Brilliant Flash I only contains 50 kg weights, this 

series alone cannot be used for training.  Each field camera data is examined 

(a) (b) 
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independently before combining them to make a four color set of features.  Following 

this test analysis, the bootstrap testing approach is applied to obtain additional results. 

1. Theory 

A more general discrimination approach beyond the two-class problem allows for 

multiple classes from which to derive class-conditional probability densities and 

posteriors.  The generalized multiple discriminate (or Fisher) analysis is well documented 

in various sources [51: 121-124] [52: 110-112] [53].  Similar to the two class problem, 

Fisher Linear Discriminant defines a Fisher ratio which uses a projection matrix W to 

reshape the scatter of data to maximize class separability and minimize within-class 

variability. 

Suppose the features are described in the matrix X of N column vectors (one for 

each event) and M rows for each feature, e.g. M = 14.  The mean of each feature for all 

events is recorded in a M x 1 vector µµµµ, with elements 

 ∑
=

=
N

i
jij x

N 1

1µ . (29) 

If there are K classes {C1, C2,…, CK}, the mean of each feature for all events in one class 

is 

 ∑
∈

=
ki Cx

i
k

k x
N r

rr 1µ , (30) 

where the vector of features for the ith event is xi.  The between-class scatter matrix is 
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 ( )( )∑
=

−−=
K

k

T
kkkB

NS
1

µµµµ rrrr
, (31) 

and the within-class scatter matrix is 

 ( )( )∑ ∑
= ∈

−−=
K

k Cx

T
kikiW

ki

xxS
1
r

rrrr µµ . (32) 

The equivalent Fisher ratio, now a transformation matrix, that repositions the data to be 

most separable is the matrix W that maximizes 

 
WSW

WSW
WJ

W

T

B

T

=)( . (33) 

According to the references cited earlier, the method of finding the correct W is relatively 

simple:  the columns of the W which maximizes J(W) are the generalized eigenvectors 

that correspond to the largest eigenvalues in  

 iWiiB
wSwS
rr λ= . (34) 

After determining the correct vector which maximize the Fisher ratio J(W), each 

event record is projected onto a line defined by this vector.  The corresponding class-

conditional probability densities and posteriors aid in quantifying feature saliency and 

stability as they did in the two-class problem discussed earlier.  An example five class 

problem using Brilliant Flash I and II is now examined.   
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2. Data 

The Brilliant Flash test series collected image data from various weights of TNT 

and ENE explosives.  Enough repetitions of these five types allow an application of the 

multi-class Fisher discrimination technique:  {TNT10, TNT50, TNT100, ENE50, ENE100} 

where the numbers represent the weight in kilograms.  The extracted areas from each of 

these types are provided in Figure 48 (Brilliant Flash I), Figure 49 (Brilliant Flash II 

ENE), and Figure 50 (Brilliant Flash II TNT).  An initial look at these areas suggests that 

the time and height of the peak area should be a good feature for discrimination.  
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Figure 48.  The extracted areas for each color, derived from Brilliant Flash I are 
shown here as a function of time: (a) ENE-50kg, (b) TNT-50kg.  The 
NIR derived areas are the solid black lines; the RGB derived areas are 
dotted, dashed, and dash-dot, respectively. 

 

3. Scaling laws 

Before applying the extracted features (14 x 4 colors = 56) to the discrimination 

tools, a pragmatic look at the feature values as a function of weight and type provides 

some insights into the discrimination challenge.  These representations are often called 

(a) (b) 
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Figure 49.  The extracted areas for each color, derived from Brilliant Flash II are 
shown here as a function of time: (a) ENE-50kg, (b) ENE-100kg.  The 
NIR derived areas are the solid black lines; the RGB derived areas are 
dotted, dashed, and dash-dot, respectively. 
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Figure 50.  The extracted areas for each color, derived from Brilliant Flash II are 
shown here as a function of time: (a) TNT-10kg, (b) TNT-50kg, and (c) 
TNT-100kg.  The NIR derived areas are the solid black lines; the RGB 
derived areas are dotted, dashed, and dash-dot, respectively. 
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scaling laws.  From examining the fourteen near-infrared features, four stand out with 

strong weight and type dependence.  As shown in Figure 51, these features are the time to 

peak area (tmp), the value of the area curve integrated over the detonation time (A), the 

median time (tmedian), and the standard deviation of the median time (σt_median).  The data 

points represent the mean of that type and weight and the error bars are the corresponding 

standards of deviation. 

On the average, the time to peak values for the TNT is quite different than those 

of the ENE, which is consistent with the findings earlier in the 50-kg two-class problem.  

For this feature, both the slope with regard to weight and the absolute values at each 

weight are different.  Potentially the strongest indicator of weight, independent of type, is 

the area curve integrated over the detonation time.  Regardless of the type, the weights 

are scalable with an A to weight W slope between 1083 and 1323 m2-msec-kg-1.  The 

median time and its standard deviation also provide good indicators of weight if the type 

is known a priori.  A committee of classifiers approach is later discussed in this chapter 

and uses one feature to determine weight before using a second feature to determine type.  

For example, the scaling laws suggest using the A to determine weight before using tmp to 

distinguish type. 

The presented scaling laws are useful in capturing predicted behavior of certain 

features as they scale with weight.  For example, suppose a new event is recorded and the 

integrated area over the detonation time was 8 x 104 m2-msec.  Then according to the 

scaling relationship in Figure 51, the event’s weight is 80 kg.  However, the prediction 

uncertainty needs to be addressed.  To answer this, the scaling law figures are redrawn to 
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capture the spread in the data X and the errors σf in the least squares best fit lines f as 

defined in Eq(35) and adapted from Bishop[52: 399-401]: 

 kik
k

kf EB
N

B
ki

++= 12σ  (35) 

where the value of the least square fit line for class k having Nk events and weight Wi is 

fki, and the weighted variance between the least squares line and the average data point 

for class k and weight Wi is 

 ( )( )2
kiki

kik

k
ki XAvgf

CN

B
E −= , (36) 

and the data points for class k and Wi are captured in the vector Xki such that the average 

for Nki events is  

 ( ) ∑
=

=
kiN

j
kij

ki
ki X

N
XAvg

1

1
. (37) 

The variance in the difference between the data and the least squares line is 

 ( )( )∑
=

−
−

=
kN

j
kki

k
k AAvgA

N
B

1

2

1

1
, (38) 

where the difference between each data record in a specific class and at a specific weight 

is kikiki fXA −= , which are elements of the vector, [ ]
kkNkkk AAAA L21= , with 

average 
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 ( ) ∑
=

=
kN

i
ki

k
k A

N
AAvg

1

1
. (39) 

The last term Cki is the variance of the individual data points in class k and weight Wi,  

 ( )( )∑
=

−
−

=
kiN

j
kikij

ki
ki XAvgX

N
C

1

2 

1

1
 (40) 

Using the A relationship in Figure 52, the correct answer to this example should 

now be 80 ± 30 kg.  In another example, suppose the weight is known to be 80 kg and the 

type is unknown.  According to the scaling relationship, if tmp is between 0 and 50 msec, 

the event could be an enhanced explosive; other wise, a tmp value between 20 and 225 

msec might indicate a TNT explosive.  Clearly, the scaling laws do not give a definitive 

answer, but they do provide an alternate view of the data that helps explain the level of 

classification difficulty with a limited data set and that may aid others in understanding 

the physics of the emissions from a detonation.  All the scaling relationships for both the 

near-infrared and the 3-chip color features are provided in Appendices G and H. 

4. Results 

Consistent with the two class discrimination discussion earlier, two test scenarios 

are examined before applying the results to the robust committee analysis (Section IV-

I).The first test uses all of Brilliant Flash II data for training and then tests the resulting 

class-conditional posteriors with the events from Brilliant Flash I test series, which 

consists of only 50-kg explosions.  Table 18 contains the test results when the 5-class 

discrimination technique is applied to the NIR, 3-chip, and the combined NIR/3-chip 

data.  The best five forward features for the NIR and NIR/3-chip combination 
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consistently show that the time to the peak area, tmp, is again the best feature for 

discrimination.  This is also true for the best five backward features using the NIR only 

data.  Recall from previous discussion that tmp provides adequate two-class discrimination 

between TNT and ENE of the same 50-kg weight.   
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Figure 51.  Four of the features extracted from the area curve derived from the 
NIR images possibly provide scaling law relationships.  The data points 
and error bars are the mean and standard deviation of each feature for 
each weight and type (solid line for ENE, dashed line for TNT).  The 
slopes of each line are indicated next to each line. 
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Figure 52.  The most probable time (a) and the integrated area over the detonation 
time (b) features extracted from the fireball area derived from the NIR 
images demonstrate scaling as a function of weight and type 
relationships.  These representations help visualize the spread in the 
data and the uncertainty in the slopes (dotted lines).  X=ENE; O=TNT. 

 

Table 18.  Record of 5-class IR data test results where Brilliant Flash II data is the 
training data and Brilliant Flash I is the testing data.  Feature saliency is 
found by ranking with the Fisher ratio (FR).  σ is the standard 
deviation.  The RGB is in parenthases.  No RGB letters signifies a NIR 
feature. 

Camera Training 
Set 

Testing 
Set 

Best 5 
Forward 
Features 

FR σσσσFR % 
Correct 

Best 5 
Backward 
Features 

FR σσσσFR 

NIR Brilliant 
Flash II 

Brilliant 
Flash I 

tmp 
Amp 

Amedian 
µ2 
tstd 

12 
24 
29 
32 
34 

1 
2 
2 
2 
3 

55 
27 
27 
27 
18 

tmp 
tstd 
µ2 
µ1 
µ3 

12 
12 
20 
26 
40 

1 
1 
1 
2 
4 

3-chip Brilliant 
Flash II 

Brilliant 
Flash I 

σt_median(R) 
σt_median(G) 

c2(G) 
tmp(R) 
µ1(B) 

11 
28 
40 
69 
83 

5 
4 
7 
9 
10 

0 
64 
64 
64 
64 

NA NA NA 

NIR & 
3-chip 

Brilliant 
Flash II 

Brilliant 
Flash I 

tmp 
Amp 

c3(B) 
c3(G) 

tmedian(R) 

12 
24 
45 
132 
206 

1 
2 
5 
17 
21 

55 
27 
9 
18 
18 

NA NA NA 
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The resulting class-conditional probability posteriors, densities, and test results 

when using the single feature tmp are represented in Figure 53.  One interesting finding is 

the reduction in the number of test events that are correctly classified.  This again is seen  
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Figure 53.  (a) Class-conditional posteriors and (b) class-conditional probability 
densities for the five classes with vertical lines drawn for each of the 
eleven test cases projected onto the single feature tmp normalized to 
zero mean and unit variance.  A solid (dotted) vertical line indicates a 
correct (incorrect) classification of the test event.  The five types are 
ENE-50kg (thick dashed), ENE-100kg (thick solid), TNT-10kg (solid), 
TNT-50kg (dashed), and TNT-100kg (dotted). 
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in the two-class problem.  For the NIR data applied to the five class problem, this 

percentage drops from 55% to 18% for the first five features.  It is important to remember 

that these features are parametric and not physical.  Many of them could be represented 

by linear (or possibly non-linear) combinations of other features.  Thus only a few 

features are needed.  These tools, even with the small amount of test data, provide a 

mechanism to determine those few features that provide the best classification.  

Specifically, the drop in the testing performance may be analogous to adding additional 

features to a curve fitting problem:  the more terms you add, the better the fit goes 

through the data, yet the prediction performance potentially declines.  Similar results are 

seen with the 3-chip data and the combined NIR/3-chip data whose individual probability 

densities are given in Figure 54. 

The stability of the class-conditional probability densities is represented by the 

normalized standard deviation of the density peaks and the density center locations: 

 ( ) 

















−⋅=

−
−

= +=
∑∑ 2

21
1

1 1

2 N
XX

N

i

N

ij
jiparamparam σσ , (41) 

where param is either the peak or center of the Gaussian distribution, the normalization is 

the root mean of the squared differences of class positions, and the number of 2-class 

pairs defined by the binomial coefficient for N classes 

 ( )! 2!2

!

2 −
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
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Figure 54.  The class-conditional probability densities (lower halfs) and posteriors 
(upper halfs) are given for a few of the top features from each camera 
data set.  Figure (a) is the result from using the two features, tmp and 
Amp.  Figures (b) and (c) show the results from using the 3-chip camera: 
(b) a single feature, σt_median(R) and (c) two features, σt_median(R) and 
σt_median(G).  Figure (d) shows the top three features as a result of 
combining the NIR and 3-chip camera data, { tmp, Amp, c3(B) }. 

 

A plot of each of these stability measures for each data set is provided in Figure 55.  Each 

of these representations suggests that no more than one or at most two features can be 

used before stability significantly degrades. 

The second test is the bootstrap approach where Brilliant Flash I and Brilliant 

Flash II test data are combined and a random set of five is chosen to be the test events.  

The remaining events are used for training and validation.  With bootstrapping, multiple  
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Figure 55.  Stability of the class-conditional probability densities are quantified by 
the standard deviations of the density peaks (a, c, e) and centers (b, d, f) 
and is a function of the feature saliency defined by the test results.  
(a,b) utilize only NIR data, (c,d) use only 3-chip color data, and (e,f) 
combines the two sources. 
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random choices, thus multiple test cases are examined.  The results of applying 

bootstrapping to the five-class problem are provided in Table 19.  This table identifies the 

test events chosen, the resulting best five features with Fisher ratios and testing  

Table 19.  Record of 5-class data bootstrapping test results where Brilliant Flash I 
and II data are combined and a random set of five events are chosen to 
be test data.  The best features are sorted by their Fisher ratio.  FR is the 
Fisher ratio.  σ is the standard deviation.  The RGB is in parenthases.  
No RGB letters signifies a NIR feature. 

# Test 
Types 

Test 
Series 

Test 
Wt 

Test 
Ev. 
No. 

Best 5 
NIR 

Features 

FR % Best 5  
3-Chip 

Features 

FR % Best 5  
Comb. 

Features 

FR % 

1 TYPEB 
TYPEC 

TNT  
TYPED 
TYPEC 

BFII 
BFII 
BFII 
BFII 
BFI 

50 
50 
50 
50 
50 

13 
5 
31 
12 
2 

tstd 
µ2 
tmp 
µ4 
c1 

6.3 
8 
12 
14 
17 

0 
20 
60 
60 
60 

A(R) 
Amp(B) 
tmp(R) 

Amedstd(G) 
Amp(R) 

7 
13 
20 
24 
30 

40 
60 
60 
40 
60 

A(R) 
Amp(B) 
tmp(R) 

Amedstd(G) 
Amp(R) 

7 
13 
20 
24 
30 

40 
60 
60 
40 
60 

2 TYPEC 
TYPEB 
TYPED 
TYPEB 

TNT 

BFII 
BFII 
BFII 
BFII 
BFII 

100 
50 
50 
50 
50 

30 
13 
12 
17 
44 

tmp 
tstd 
µ2 
µ4 
µ1 

6.9 
9.0 
13 
14 
17 

60 
80 
60 
60 
80 

tmedian(R) 
Amp(B) 
c2(G) 

Amedstd(R) 
tmedstd(R) 

7 
12 
15 
20 
25 

80 
40 
20 
40 
40 

tmp 
tmp(B) 
c3(R) 

A 
tmedstd(R) 

7 
14 
20 
27 
30 

60 
20 
40 
20 
0 

3 TNT  
TYPEC 

TNT  
TYPED 
TYPEB 

BFI 
BFI 
BFI 
BFI 
BFII 

50 
50 
50 
50 
50 

24 
3 
31 
19 
13 

tmp 
A 
µ4 
µ2 
tstd 

7.7 
11.1 
15 
18 

21.1 

0 
20 
20 
0 
20 

tmedian(R) 
Amp(B) 
c2(G) 

Amedstd(G) 
µ3(B) 

7 
18 
23 
28 
34 

60 
20 
20 
20 
20 

tmp 
Amp(B) 
A(G) 

tmedstd(B) 
c1(G) 

8 
13 
23 
31 
43 

0 
20 
40 
20 
40 

4 TNT  
TYPED 

TNT  
TYPED 
TYPED 

BFII 
BFII 
BFI 
BFI 
BFI 

10 
50 
50 
50 
50 

15 
12 
31 
18 
19 

tmp 
A 
µ3 
c1 
µ2 

6.5 
9.0 
10.6 
12.0 
13.3 

60 
20 
40 
80 
80 

A(B) 
tmedian(R) 

c1(G) 
µ4(B) 

Amedian(G) 

6 
11 
17 
21 
30 

40 
40 
20 
20 
20 

tmp 
tmp(B) 

tmedstd(R) 
tmedstd(G) 
tmedian(R) 

6 
12 
17 
23 
38 

60 
0 
20 
60 
60 

5 TNT  
TYPED 

TNT  
TYPEC 
TYPED 

BFII 
BFII 
BFII 
BFII 
BFII 

50 
50 
10 
100 
100 

31 
19 
15 
23 
38 

tmp 
A 
c1 
µ4 
µ2 

8.3 
10 
11 
14 
15 

40 
40 
40 
20 
20 

tmedian(R) 
Amedian(B) 

c1(G) 
µ1(R) 
µ3(B) 

5 
11 
15 
21 
25 

60 
60 
60 
40 
40 

tmp 
tmedstd(R) 

µ1 
µ2 

tmp(B) 

8 
12 
16 
26 
37 

40 
40 
60 
20 
40 

 

performance for each bootstrap iteration and for each data set used, e.g. NIR only, 3-chip 

only, or combined NIR and 3-chip.  This table is not an end in itself but a means to 
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determine which features are consistently important in the discrimination problem.  The 

NIR results again suggest that the time to the peak of fireball area is an important feature.  

The resulting probability densities (Figure 56) suggest tmp provides some discrimination 

among four classes:  ENE, TNT-10, TNT-50, and TNT-100.   
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Figure 56.  Data projected onto the single feature, tmp, best separates the five 
classes.  The posteriors [P(ci|x) (dashed lines)] give a correct 
classification probability range between 30 to 100%.  

▲
=ENE-50kg, ♦

=ENE-100kg, ● =TNT-10kg, X=TNT-50kg, ▄ =TNT-100kg. 
 

According to the bootstrap results, a second feature to combine with tmp is the 

integrated area over the detonation time, A; however, all the probability densities overlap 

sufficiently enough to prevent this feature from aiding in the discrimination.  The higher 

Fisher ratio is attributed to smaller class variances.  Other possibly important NIR 

features from the bootstrap results include µ2 and c1 as shown in the feature saliency plot 

X 

X 

▄  
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of Figure 57; yet neither of these features significantly improves the Fisher ratio or the 

probability densities class separation. 
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Figure 57.  Using the NIR only bootstrap results as a guide, one possible feature 
saliency shown in (a) is the tmp, A, µ2, and c1.  The Fisher ratios 
calculated here come from the leave-one-out using all the data.  The 3-
chip color results and the combined NIR and 3-chip color results are 
displayed in (b) and (c), respectively.  The percent of the left out test 
events that are correctly classified labels each data point.  Different 
training sets cause variation in tmp values. 

 

Figure 57 (b) and (c) also shows the Fisher ratio results when choosing the top 

features from the 3-chip data analysis and the combined NIR/3-chip data analysis, 

respectively.  The top two 3-chip features are tmedian(R) and Amp(B).  The median time in 

the red wavelength band provides slight separation for all five classes, but as shown in 

Figure 58(a), it does provide better classification if there are only four classes, leaving out 

TNT-10 or TNT-50.  The peak in the blue area Amp(B) does not significantly improve the 

tmedian(R) results.  Likewise from the combined NIR/3-chip results, a second top feature is 

the time to the peak blue fireball area tmp(B), yet as shown in Figure 58(b), this second 

feature does not significantly improve class separation over that achieved by the time to 

(a) 44% (b) (c)  
   51% 44% 
 
 
 26% 
   21% 
 
 
 46% 
 21%  31% 
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the NIR peak area.  An interesting finding is the best NIR feature tmp and the best Color 

feature tmedian(R), when combined, actually degrade the Fisher ratio and do not improve 

the class-conditional probability densities derived from the best Color feature.  This 

suggests that these two features contain nearly the same information about the fireball.  

Also, the best Color feature provides slightly better classification of all five types than the 

best NIR feature. 
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Figure 58.  Using the 3-chip camera data (Figure a) and the combined NIR/3-chip 
data (Figure b), the class-conditional probability densities (lower halfs) 
and posteriors (upper halfs) are given for a (a) tmedian(R) and (b) feature 
set { tmp, tmp(B) }. 

▲
=ENE-50kg, 

♦
=ENE-100kg, ● =TNT-10kg, 

X=TNT-50kg, ▄ =TNT-100kg. 
 

I. Committee of classifiers for robust testing five-class discrimination 

The committee of classifiers approach is again utilized to robustly test the features 

that indicate high Fisher ratio and high stability at classifying the five classes as 

determined by the two test scenarios and scaling relationships.  Since the number of 100 

kg events is limited, then the robust test is simply a leave-one-out test.  Each time an 

event is used as a test case, the training produces five class-conditional probability 
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densities.  After all the test cases are exhausted, an average of all the class-conditional 

densities is used to evaluate each event to determine the percent of those events that are 

correctly classified.  The features chosen for testing are top one or two features from each 

of the previous test cases on the five-class problem.  In addition to these features, those 

from the two-class problem are also tested.  Lastly, the scaling relationships shown in 

Figure 59 suggest that the integrated area over the detonation time and the median time in 

the green band are possible discriminates of weight, independent of type.  A test of these  
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Figure 59.  Possible scaling laws for the Brilliant Flash types are represented by 
(a) the integrated near-infrared area over the detonation time A and (b) 
the median time tmedian(G) in the green color band.  X = ENE events; O 
= TNT events. 

 

two features’ performance on predicting weight independent of type yields 74% accuracy 

for A while tmedian(G) yields 51%.  Their combined effect yields 67% accuracy.  The 

results of applying all the before mentioned features to the five-class discrimination are 

provided in following table: 
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Table 20.  The percent of events that are correctly classified when using an 
average of the class-conditional probability densities are presented for 
the five-class discrimination problem.  The values along the diagonal 
are the percentage of correct classifications when only one feature is 
used to classify the five types.  The off-diagonal elements are the 
percentages of correct classification when two features are utilized. 

5-class t mp Amp(B) A(B) tmedian (R) tmedstd A Amp 

tmp 59% 74% 74% 51% 51% 23% 54% 

Amp(B) 74% 54% 59% 59% 15% 54% 59% 

A(B) 74% 59% 67% 56% 38% 62% 62% 

tmedian (R) 51% 59% 56% 64% 62% 36% 64% 

tmedstd 51% 15% 38% 62% 28% 46% 33% 

A 23% 54% 62% 36% 46% 46% 51% 

Amp 54% 59% 62% 64% 33% 51% 56% 

 

Consistent with the two-class results, tmp is likely a key feature in discriminating 

the five classes.  The 59% performance and F = 6.7±0.5 is reflected in the test results and 

class-conditional probability densities shown in Figure 60.  The results based upon  
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Figure 60.  (a) Class-conditional posteriors and (b) class-conditional probability 
densities with a Fisher ratio of 6.7±0.5 for the five classes with vertical 
lines drawn for test cases projected onto the single feature tmp 
normalized to zero mean and unit variance.  A solid (dotted) vertical 
line indicates a correct (incorrect) classification of the test event.  The 
five types are ENE-50kg (thick solid), ENE-100kg (thick dashed), 
TNT-10kg (thin), TNT-50kg (thin dashed), and TNT-100kg (thin 
dotted). 

(a) (b) 
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Amp(B) shown in Figure 61, on the other hand, decreases the chance of correct 

classification to 54% with a F = 4.6±0.9.  The combined effect of these two features 

(Figure 62) significantly raises the confidence to 74% and Fisher ratio to 11±1.  As a 

corollary, A(B) has similar performance as Amp(B). 
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Figure 61.  (a) Class-conditional posteriors and (b) class-conditional probability 

densities with a Fisher ratio of 4.6±0.9 for the five classes with vertical lines 
(solid=correct, dashed=incorrect) drawn for test cases projected onto the 
single feature, Amp(B), normalized to zero mean and unit variance.  The five 
types are ENE-50kg (thick solid), ENE-100kg (thick dashed), TNT-10kg 
(thin), TNT-50kg (thin dashed), and TNT-100kg (thin dotted). 
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Figure 62.  (a) Class-conditional posteriors and (b) class-conditional probability 

densities with a Fisher ratio of 11±1 for the five classes with vertical lines 
(solid=correct, dashed=incorrect) drawn for test cases projected onto the 
two-feature set { tmp, Amp (B) }  normalized to zero mean and unit variance.  
The five types are ENE-50kg (thick solid), ENE-100kg (thick dashed), 
TNT-10kg (thin), TNT-50kg (thin dashed), and TNT-100kg (thin dotted). 
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J. Conclusions to discrimination tools development and imagery analysis 

This chapter focused on one possible method of employing pattern recognition 

techniques to discriminate uncased explosives using features derived from imagery.  The 

bomb detonation images are reduced to fireball areas which, for the first time, 

demonstrate that these types of explosives are reproducible.  The pattern recognition 

tools, confirmed by scaling relationships, then quantify and rank the classification ability 

of various characteristic features of the fireball areas. 

In general, as the number of features used to classify an event increase, the class-

conditional probability densities become less stable and the resulting cross-validation 

returns a lower percentage of events that are correctly classified.  Whether one uses a 

near-infrared InGaAs camera or a 3-chip color camera, one or two features provide 

sufficient ability to classify an explosive. 

Three a priori conditions are examined for each type of camera and the 

combination of the two:  (1) all events weigh 50 kg and are either TNT or ENE, (2) the 

weight is unknown and the type is either TNT or ENE, and (3) neither the weight nor the 

type is known.  Overall, the features related to the peak of the fireball provide the best 

classification.  For example, the time to fireball peak in the near-infrared (tmp) is the best 

discriminator for each of the three a priori conditions.  This feature correctly 

discriminates between TNT and ENE about 90% of the time, whether weight is known or 

not.  The associated class-conditional probability densities separate the two classes with a 

Fisher ratio of 2.9 and an area under the receiver operating characteristic, AROC, of 0.992.  

Also, tmp achieves approximately 60% success rate at discerning both weight and type. 
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Similarly in the blue band, the maximum fireball size (Amp(B)) can tell a TNT 

event from an ENE event approximately 93% of the time when weight is 50-kg; 

otherwise, this feature is 79% accurate when weight is unknown.  The better performance 

is indicative of the corresponding larger Fisher ratio of 5.4.  The fireball area, integrated 

over the detonation time (A(B)), is the best single color feature in discriminating both 

type and weight at a 67% success rate. 

Linear combinations of two features improve classification.  For example, 

combining Amp(B) with σt_median from the near-infrared will maximize (100%) the ability 

to classify an event as TNT or ENE if weight is known to be 50 kg.  Likewise, tmp and 

A(B) increase the accuracy from 59% using tmp alone to 74% in the five class problem of 

distinguishing both explosion type (TNT or ENE) and weight (10, 50, or 100 kg). 

A committee of classifiers breaks the unknown weight and type problem into two 

potentially solvable parts or committees.  The first committee uses a feature to determine 

weight followed by the second committee which determines type from a second feature.  

Two of the extracted features scale with weight with varying amounts of error:  the 

integrated near-infrared area over the detonation time A, which has a 74% accuracy in 

predicting the three weights of 10 kg, 50 kg, and 100 kg, and the median time in the 

green color band tmedian(G), which has a 51% prediction accuracy.  If a feature predicts 

weight accurately, then a second feature could determine the type as TNT or ENE.  For 

example, if the weight is 50 kg then Amp(B) and σt_median could be used to determine the 

type.  Unless additional reproducible data is acquired to improve weight prediction 

performance, then estimating both type and weight from A(B) alone yields similar 

accuracy. 
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V. Fisher discrimination of Radiant explosives 

The previous chapter introduced a pattern recognition approach to classifying 

events and applied it to image data collected on uncased explosive materials.  The spectra 

from these detonations were simultaneously collected and introduce very distinct spectral 

profiles from cased munitions detonation spectra as shown in Figure 63.  Specifically, the 

cased munitions generate emission spectra similar to a blackbody attenuated by the 

atmosphere; on the other hand, uncased explosives under investigation are very non-

Planckian as demonstrated with extra emissions and absorption spectral regions.  Since a 

simple model to describe the uncased detonation spectra does not exist and is beyond the 

scope of the current work, the discrimination tools and approach developed in the 

previous chapter are now applied to spectra collected from the uncased munitions during 

Radiant field tests 3A and 3B.  This chapter is begins with  
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Figure 63.  Spectral comparisons of various classes of munitions show that (a) 
uncased explosives contain strong emissions and absorption regions not 
characteristic of graybody emission and (b) the cased ordnances look 
much like a graybody attenuated by the atmosphere. 
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an introduction to the Radiant test series data followed by a short description of a 

referenced spectral fitting model.  The discrimination tools are then applied to the fit 

parameters to establish feature saliency and classification ability.   

A. Radiant test series 

The Radiant test series collected spectral data from a variety of weapon 

munitions, which are grouped within five types:  Type A Small static and dynamic (Table 

21), Type B Large static and dynamic (Table 22), and Type B Medium dynamic (Table 

23).  Within these tables, the first letter is the type of ordnance (A or B); the second is the 

weight (S, M, or L); and the third is the method of delivery (d for dynamically air-

dropped or s for a static detonation on the ground).  An AFIT thesis by Jay Orson [28] 

contains a complete description of the test setup. 

Typical spectral data is dependent on both the frequency (or wavenumber σ) and 

duration of the emission as shown in Figure 64 below.  Atmospheric absorption regions 

cause the drop out in the data at various wavenumbers, e.g., between 3000 and 4000 cm-1.  

See Figure 2 on page 11 for more details on the atmospheric transmission properties.  The 

intensity at longer wavelengths (shorter wavenumbers) is longer lived than the shorter 

wavelengths, which is consistent with a cooling blackbody emitter.  At a moment in time, 

as seen in Figure 65, the intensity resembles the Planckian radiation law multiplied by an 

appropriate atmospheric transmission function, which is the fundamental aspect of the 

spectral model described in the next section.  At a fixed wavenumber, the intensity 

exhibits two common profiles: one that decays like a single exponential and another that 

decays like a triple exponential as seen in the two examples in Figure 66.   
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Table 21.  Type A Small (InSb, 16 cm-1) event list. 
Event ID Type Angle Test 

e214_03b A (S)d 155° Perpendicular  RB3A 
e214_04b A (S)d 155° Perpendicular  RB3A 
e214_05b A (S)d 155° Perpendicular  RB3A 
e214_06b A (S)d 155° Perpendicular  RB3A 
e214_07b A (S)d 155° Perpendicular  RB3A 
e215_22b A (S)d 335° Toward RB3A  
e216_30b A (S)d 65° Away RB3A  
e216_32b A (S)d 65° Away RB3A  
e216_33b A (S)d 65° Away RB3A  
e298_04b A (S)s 45° Tower RB3B  
e298_05b A (S)s 45° Tower RB3B  
e298_06b A (S)s 45° Tower RB3B  
e298_07b A (S)s 45° Tower RB3B  
e298_08b A (S)s 45° Tower RB3B  
e298_10b A (S)s 45° Tower RB3B  
e301_12b A (S)s 45° Tower RB3B  
e301_18b A (S)s 45° Tower RB3B  
e301_21b A (S)s 45° Tower RB3B  

 

Table 22.  Type B Large (InSb, 16 cm-1) event list. 
Event ID Type Angle Test 

e214_10b B (L)d 155° Perpendicular  RB3A 
e214_13b B (L)d 155° Perpendicular  RB3A 
e215_18b B (L)d 335° Toward RB3A  
e215_20b B (L)d 335° Toward RB3A  
e215_21b B (L)d 335° Toward RB3A  
e216_43b B (L)d 65° Away RB3A  
e301_15b B (L)s 30° Elevation RB3B  
e301_16b B (L)s 10° Elevation RB3B  

 

Table 23.  Type B Medium (InSb, 16 cm-1) event list. 
Event ID Type Angle Test 

e214_14b B (M)d 155° Perpendicular  RB3A 
e214_15b B (M)d 155° Perpendicular  RB3A 
e216_39b B (M)d 65° Away RB3A  
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Figure 64.   Typical Radiant spectral data is observed intensity Iobs as a function of 
frequency σ (cm-1) and time t.  The data shown here is downsampled to 
simplify the view. 

 

 

Figure 65.  Radiant spectra from two time steps exhibits Planckian radiation law 
characteristics for when the atmospheric transmission is accounted. 
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Figure 66.  Temporal profiles of two types of emissions from Radiant test.  Figure 
(a) shows an emission with a single exponential decay behavior, while 
Figure (b) exhibits a triple exponential decay. 
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B. Basic spectral model description 

Current research by Ph.D. candidate, Mr. Kevin Gross, at the Air Force Institute 

of Technology [54] demonstrates the possibility of distinguishing explosive types by the 

features derived from a fit of the spectral data to the Planckian radiation law: 

 ( )( ) ( ) ( )( ) ( ) ( )( ) 1exp
2

,,
32

−
=⋅=

tTkhc

hc
tAtTLtAtTI
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BB σ

σεσεσ . (43) 

Since the event intensities for these events is greater than 20,000 times the background, 

the background radiance contribution is ignored.  The fit parameters in Eq.(43) include 

the temperature as a function of time T(t), the area-emissivity product as a function of 

time Aε(t) or A(t) for short, and the fit residual as a function of time ∆I(t).  This type of fit 

is made possible because of the Planckian nature of the spectral data and a unique method 

to describe the current state of the atmosphere.  The atmospheric model, in most simple 

terms, uses distinct features of the various absorbers (e.g., H20, CO2, CH4, N2O, and N2 

continuum), to correct a generic MODTRAN transmission description.  An example form 

[37] which displays these corrections is provided in Figure 67.  An example residual to 

the fit data is shown in Figure 68.  Pronounced residuals above background, e.g. ∆Iσ = 4-

8 kW/Srcm1, are consistently observed for the Radiant data in the 1950 to 2250 cm-1 

region.  Thus, in addition to the area-emissivity A(t) and temperature T(t) derived from 

the Planck fit, the integrated residual as a function of time in this region ∆I(t) provides a 

third extracted parameter.  These three parameters now represent the data set seen in 

Figure 64.  Each of the three parameter values for each event in the Radiant test series is 

plotted in Figure 69 through Figure 71. 



www.manaraa.com

 

113 

 

Figure 67.  Atmospheric correction involves systematically adjusting atmospheric 
absorption species' concentrations to match the absorption features seen 
in the data. 
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Figure 68.  Spectral residuals between the data and the Planckian fit for a Radiant 
event show a growth in the 1950-2250 cm-1 region.  The two residuals 
shown here are calculated at detonation time, t0 and three time steps 
later 3δt = 0.147s. 
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72(b) all exhibit an exponential decay in temperature.  One possible discriminator is the 

rate at which these temperatures cool down to ambient.  The area-emissivity product 

εA(t) on the other hand shows some potential for discriminating a few of the types shown 

in Figure 69 and Figure 72(a).  This area is different than the area from the imagery as 

discussed in the last chapter.  The product of the area and emissivity is a mid-IR feature 

that combines the effect of a fireball growing and cooling in time and the emissive 

properties of a graybody fireball.  These differences may be beneficial in distinguishing 

between the Radiant explosive types.  First of all, A(t) reaches a higher first maximum in 

the A(S)s events than it does in the A(S)d events.  A strong positive slope toward this 

first maximum is also consistent with A(S)s events; where as, a negative slope toward a 

minimum is representative of B(L)s events.  Additionally, the areas continue to grow at a 

faster rate in the static events.  Lastly, if one excludes the outlier B(L)d event, there 

seems to be no obvious differences between the dynamic events. 

Possibly the strongest discriminator lies in the integrated residual between 1950 

and 2250 cm-1.  (A short-hand notation of ∆I is used in replace of ∆I/τ (1950-2250 cm-1).)  

The represented data in Figure 71 and Figure 72(c) shows that most of the static events 

have a peak ∆I greater than 3 x 106 kW/Sr.  Within the static events, the initial ∆t0 and the 

ratio of the this value to the peak ∆tmp is smaller for the Type A small (A(S)) events than 

they are for the Type B large (B(L)) events.  Lastly, the shapes of the static events are 

more reproducible, resembling either a double exponential for A(S)s events or a single 

exponential decay for the B(L)s events. 
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Figure 69.  Radiant area-emissivity products A as a function of time t, as derived from the Planckian fits. 
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Figure 70.  Radiant temperatures T as a function of time t, as derived from the Planckian fits. 
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Figure 71.  Radiant integrated residuals ∆I (1950-2250cm-1) divided by the atmospheric transmission function τ as a 
function of time t, as derived from the Planckian fits. 

117 



www.manaraa.com

 

 118 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
x 10

8 Area Data for Type B(M)d

t (sec)

A
 (

cm
2 )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
600

800

1000

1200

1400

1600

1800

2000

2200
Temperature Data for Type B(M)d

t (sec)

T
 (

°K
)

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10
x 10

6  

t (sec)

∆I
 /τ

 (
19

50
−

22
50

 c
m

−
1 ) 

(k
W

/S
r)

 

Figure 72.  Planckian fit parameters for Radiant events of type B, medium weight, 
and dynamically dropped.  Figures (a), (b), and (c) are the area-
emssivity, temperature, and residual properties, respectively. 

 

C. Feature extraction 

The temporal behaviors of the Planckian fit parameters identified above aid in 

determining features that capture the differences and similarities among the various data 

types.  This list of features is fed into the discrimination tools developed in the last 

chapter to produce probabilistic capabilities to distinguish among the Radiant event types. 

The features that capture the T(t) are the fit values to an exponential decaying 

function that begins at a high temperature TH and decays at the rate Γ to a low 

temperature TL: 

(a) (b) 

(c) 
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 ( ) ( ) LLH TtTTtT +⋅Γ−⋅−= exp)( . (44) 

The area-emissivity product A(t) is captured by a more complicate model that includes 

terms to model the initial rise, the plateau, and final rise in the tail: 

 ( ) ( ) ( ) ( )( ) ( ) ( )00exp1exp| tttHCtkBtkstSAtA ba −⋅⋅+−−⋅+−⋅⋅= , (45) 

where A and B are amplitudes; ka and kb are rates of decay; H(t0) is the heavy-side 

function turning on a linear term, C(t-t0), as needed; and S(s) is a switching function that 

monotonically and smoothly increases from 0 to 1 and controls the rate at which the first 

term “turns-on:”   

 ( ) ( )α+−+
=

st
stS

exp1

1
| , (46) 

where α is a fixed constant, α = 3.42174.  This single model for the area-emissivity 

product captures the range in the A(t) behavior as shown by a few examples in Figure 73. 

The last set of features is derived from the residual information ∆I which is the 

residual between the data and the Planckian fit, integrated from 1950 to 2250 cm-1 which 

is speculated by Mr. Gross to be the spectral region associated with burning of hot CO2.  

The inconsistent temporal behaviors of ∆I lead to no simple single model to describe all 

the data.  Thus direct values, such as the ones mentioned before, are extracted from the 

data and used as features.  These features as well as a general description of all the 

features mentioned for the Radiant data is presented in Table 24. 
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Figure 73.  These fits to example area data show that Eq.(45) models the range of 
possible A(t) behavior. 

 

D. Scaling relationships of the extracted spectral features 

The values of each of the features described above are examined for possible 

scaling relationships.  Appendix I contains each feature plotted as a function of size 

(small, medium, and large given fictitious values of 10, 50, and 100 kg) and type (x for 

static events and o for dynamic events).  Of the 23 features, five show promised ability to 

distinguish either type or weight and are shown in Figure 74.  ∆Imp/τ separates most of the 

static events from the dynamic events independent of weight.  For the Type A small, 

A(S), both TL and A_t0 separate most of the static and dynamics events.  Within the static 

events, ∆I0/τ and Rmp/0 both show promise in distinguishing weight. 
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Table 24.  Features and their descriptions used for discriminating spectral data. 
Symbol Unit Description 

TH (K) High temperature for T(t) 

TL (K) Low temperature for T(t) 

Γ (s-1) Exponential decay rate for T(t) 

σTH (%) Error in TH 

σTL (%) Error in TL 

σΓ (%) Error in Γ 
A_A (cm2) Amplitude of first term in εA(t) 

A_Switch (unitless) Switching value to control the turn-on  

of the second term in εA(t) 
A_ka (s-1) Exponential decay rate for the first  

term in εA(t) 
A_B (cm2) Amplitude of the second term in εA(t) 
A_kb (s-1) Exponential decay rate for the second 

term in εA(t) 
A_C (cm2) Amplitude of the third term in εA(t) 
A_t0 (s) Time to turn on linear term in εA(t) 

CO_Imp (W/Sr) Peak of ∆I(t), also ∆Ιmp 
CO_tmp (sec) Time at ∆Ιmp 
CO_Io (W/Sr) ∆Ι(t) at detonation time, also ∆Ι0 
CO_t2 (sec) Time nearest to 2 seconds 

CO_I2 (W/Sr) ∆I at t = 2 seconds, also ∆I2 
CO_t0.5 (sec) Time nearest to ½ second 

CO_I0.5 (W/Sr) ∆Ι at t = ½ second, also ∆I0.5 
CO_RI2/I0 (unitless) ∆I2 / ∆I0 
CO_R2/0.5 (unitless) ∆I2 / ∆I0.5 
CO_Rmp/0 (unitless) ∆Imp / ∆I0 

 

E. Committee of classifiers to discriminate Radiant events 

The committee of classifiers approach to discriminating the Radiant events using 

the spectral data uses the observations made earlier to identify candidate features that 

may aide in classification followed by a robust test to determine the accuracy in class 

predictions.  These candidate features are the five shown in Figure 74 and accuracy 

results from robustly testing are given in Table 25.  For each feature or combination of 

features, the robust test examines 1000 possible cases where each case uses a different set  
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Figure 74.  Five features extracted from the spectra that exhibit classification 
potential are (a) the low temperature fit parameter TL, (b) the time 
constant A_t0 controling the turn-on for the linear portion of A(t), (c) 
the most probable or peak value and (d) the initial value of the 
integrated residual divided by the transmission profile of the 
atmosphere (∆Imp/τ and ∆I0/τ), and (e) the their ratio Rmp/0.  X = static 
events.  O = dynamic events.  10, 50, 100 kg represent A(S), B(M), and 
B(L), respectively. 

(a) (b) 

(c) (d) 

(e) 



www.manaraa.com

 

 123 

of five events for testing and the remaining for training.  After the 1000 cases, the mean 

of all class-conditional probability densities is tested by each event to determine the 

ability of the densities to distinguish between types.  The best performing features, shown 

in Figure 75, are those associated with the CO2 emission region. 

 

Table 25.  Prediction accuracies based upon the feature used.  The results in the 
solid box refer to the ability to distinguish static and dynamic events if 
Type A(S).  The dashed box contains the prediction accuracy to 
distinguish static and dynamic events independent of weight or type.  
The dotted box addresses the ability to distinguish small and large static 
events. 

spectral 

features 

TL 

(ºK) 

A_t0 

(s) 

∆∆∆∆Imp/ττττ 

(W/Sr)    

∆∆∆∆Imp/ττττ 

(W/Sr) 

∆∆∆∆I0/ττττ 

(W/Sr) 

Rmp/0 

TL 89%      

A_t0  89%     

∆∆∆∆Imp/ττττ      100%    

∆∆∆∆Imp/ττττ    86%   

∆∆∆∆I0/ττττ     100%  

Rmp/0      90% 
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Figure 75.  Class-conditional probabilities (right column) and resulting range of 
posteriors (left column) with test data identified as vertical stems 
illustrates class separation and reason for high accuracies in placing a 
new event into the right class.  Figures (a) and (b) are for the feature 
∆Imp which yielded a 86% accuracy of 998 test cases (F = 11.0±1.0) in 
determining if an event is static or dynamic, independently of weight.  
Figures (c) and (d) show the results of using ∆I0 to distinguish large 
and small static events with 100% accuracy for 11 test cases 
(F = 99±32). 

 

F. Conclusions to using spectra to discriminate munitions 

For the first time, the Planck radiation function multiplied by an accurate 

atmospheric model is applied to the emissions from cased munitions collected during the 

Radiant test series.  As a result, this novel approach shows reducibility in three time-

dependent parameters that represent the intensity data as a function of wavenumber and 

(a) (b) 

(c) (d) 

static 

dynamic 

large 

small 
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time: the area-emissivity product, the temperature, and the integrated residual of the fit 

from 1950 to 2250 cm-1.  These fit parameters demonstrate differences between the static 

events, dynamic events, and weights.  Twenty three features are further extracted from 

these time-dependent parameters, and pattern recognitions tools quantify these features’ 

ability to classify events.  The best two features come from the integrated residual 

∆I(σ) in the 1950 to 2250 cm-1 spectral band and provide an ability to classify some of 

the event types collected during the Radiant test.  The integrated residual initial 

magnitude at detonation ∆I0 seems to scale with weight—particularly the static events of 

which this feature predicts the weight with 100% accuracy and large class separation 

represented by a Fisher ratio of F = 99±32.  The second feature is the peak of the 

integrated residual ∆Imp which does not scale with weight but does distinguish between 

static and dynamically dropped ordnances with 86% accuracy and a Fisher ratio of 

F = 11.0±1.0, given similar test conditions.  If a priori information is that the event type 

is Type A Small, then this same feature can absolutely determine if the event was 

statically detonated or dynamically dropped. 
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VI.    Conclusions 

A. Impact of this research on classification 

Significant progress towards the classification of battlespace detonation events 

has been achieved, including (1) acquisition of reliable signatures for specific event 

classes under field conditions, (2) enhanced characterization of event phenomenology for 

key feature extraction, (3) apply quantitative classification methodology using class 

conditional probability densities, (4) selection of key features that offer reproducibility 

within a class and distinguishability between classes, and (5) demonstration of successful 

classification within a defined subset of event types.  For the first time among the small 

community involved in munitions classification, pattern recognition tools have been 

applied to a set of key image and spectral features to exploit class-conditional probability 

densities and establish that classification potential is high among the event types 

investigated.  Additionally, these features provide valuable insights for newly 

documented bomb/fireball phenomenology. 

Two new field tests were designed and conducted with the objective of 

classification between uncased conventional munitions as represented by trinitrotoluene 

(TNT) and an enhanced novel explosive (ENE) material of interest to the military 

intelligence community.  Signatures for 95 events, including mid-infrared spectra, near-

infrared imagery, and three-band visible imagery, were acquired over approximately 30 

days during two separate field deployments. 

Detonation fireballs from cased munitions are largely Planckian in the mid-

infrared with initial temperatures of 1200 – 1800 ºK, attenuated by atmospheric 
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absorption.  Temperatures often decay exponentially to ambient within 1 – 3 s for large 

charges of cased munitions and in less than 1 s for uncased or smaller weight charges.  

Occasionally, temperature profiles exhibit secondary maxima at 0.5 – 1 s after 

detonation.  Non-Planckian spectra features, particularly in the 1950 – 2250 cm-1 band, 

are observed with 10% deviation from Planckian behavior for cased munitions and often 

greater than 50% for uncased munitions. Fireballs from uncased explosives typically 

attain a maximum area in the near infrared of 100 – 200 m2 at 20 – 200 ms after 

detonation.  Fireball size depends on imaging frequency band, with smaller, shorter lived 

fireballs in the blue.  The combination of decaying temperature and growing fireball size 

often produce irradiance profiles with secondary maxima at 0.25 – 0.5 s. 

Discrimination tools based on standard pattern recognition techniques quantify 

the classification potential of the extracted features using (1) the Fisher ratio and (2) the 

area under the receiver operating characteristic curve (ROC) to capture class separation 

and clustering of class-conditional probability densities, and (3) a performance 

percentage value of correct classification during cross-validation.  Classification stability 

is also captured by the standard deviation of the Fisher ratio or that of the area under the 

ROC curve, AROC.  Thus, a good feature is independent of training and testing data 

selection and is one that consistently generates a high Fisher ratio (or AROC), a low 

standard deviation in the Fisher ratio (or area AROC) and small standard deviations in the 

locations of the class-conditional probability densities.  Feature stability is also 

independent of training and testing data selection and is measured by a consistent ordered 

ranking of features by either the Fisher ratio or the area under the ROC curve.  

Interestingly, some features produce a relatively high Fisher ratio, yet the class-
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conditional probability densities overlap significantly because one density is nearly a 

delta function in the vicinity of the other class density.  This case may be useful in some 

applications where high discrimination confidence is required. 

This research has shown that a more appropriate method of employing pattern 

recognition tools is to use a committee of classifiers which first examines each extracted 

feature for scaling law properties.  Features that scale with weight or type of munition not 

only best perform classification but also provide the pool of features from which feature 

saliency, or ranking of features, is determined.  Based upon the current findings in 

projecting a multidimensional feature-space into a one-dimensional Fisher line for 

discrimination, a set of two features is the limit before feature stability declines.  Higher 

dimensional discrimination along Bayesian decision boundaries defined by hyperquadric 

lines or three-dimensional surfaces may provide the dimensionality necessary to 

discriminate using three or more features.  In effect, the committee of classifiers is a step 

toward multivariate discrimination using two-dimensional probability densities. 

Using the developed tools for quantifying classification potential for cased 

munitions emission spectra, the mid-infrared spectra from cased munitions can be 

reduced to a set of features including fireball temperature, area, and residuals to 

Planckian fits in selected spectral bands as a function of time.  The residuals in the 1950 – 

2250 cm-1 (4.4-5.1 µm) band corresponding to hot CO2 emissions are typically less than 

10% and provide the best discrimination between explosive type, size, and method of 

detonation (static or aircraft delivered). Indeed, discrimination based only on the peak 

residual provides 100% accurate classification and F = 14±1 between static and dynamic 

detonation for one type and size of munitions and 86% accuracy independent of type and 
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size (F = 11.0±1.0).  Equally impressive is the ability to distinguish between large and 

small weights for static detonations at 100% accuracy and F = 99±32 using the residual 

immediately after detonation.  Uncased munitions exhibit highly non-Planckian behavior, 

offering strong classification potential for TNT and ENE materials. 

Uncased munitions, on the other hand, are not Planckian, yet the fireball size 

derived from near-infrared and color imagery shows sufficient reproducibility and class 

distinguishability to warrant quantification.  The areas derived from the images are 

phenomenologically different from those derived from the Planckian fit in that areas from 

the imagery quickly rise before falling to background.  As discovered with the cased 

munitions, only one or two features from the fireball area are useful in classifying 

explosion types and weights while maintaining stable class-conditional probabilities. 

Three a priori conditions are examined for an unknown event being an uncased 

explosive device made of either TNT or an enhanced material:  (1) all events weigh 50 kg 

and are either TNT or ENE, (2) the weight is unknown and the type is either TNT or 

ENE, and (3) neither the weight nor the type is known.  Overall, the features related to 

the time to peak (tmp) of the fireball area in the near-infrared provide the best 

classification for each of the three a priori conditions.  For TNT, tmp = 40 – 160 ms and 

for ENE materials, tmp = 0 – 60 ms.  Feature saliency from Fisher discrimination 

techniques always yields tmp as the most important feature, with duration of the fireball 

and symmetry of its area, as measured by the standard deviation in the median time and 

the skew in the residual of a parametric fit of the area, as secondary features.  The single 

feature tmp yields a Fisher ratio of F = 2.9±0.3 and 89% accuracy in robust testing of 

explosive type classification if the weight is known a prior (at 50 kg) and 87% and 
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F = 2.5±0.1 if the weight is unknown.  Similarly, the single best feature from the 3-band 

visible imagery is the maximum area in the blue band, Amp, of 10 – 60 m2 for TNT and 40 

– 280 m2 for ENE.  This feature provides 93% and 79% correct classification and F = 

5.4±0.2 and 4.4±0.1 for the 50 kg and unspecified weights, respectively. 

Combining the time to peak size in the near IR and maximum area in the blue 

does not significantly improve the classification performance.  For a five class problem of 

two types and three weights, combining these two features improves the classification 

performance to 74% from 54% for either feature alone.  The single best feature for the 

five class problem is the time integrated area in the blue band, but this feature is highly 

correlated with the corresponding peak area.  Linear combinations of two or more 

features do not improve classification and decrease stability in the locations and peaks of 

the class-conditional probability densities. 

In general, image data contains more information about the type of explosive than 

about the weight.  Even so, success in discriminating cased munitions with spectral 

content leads one to believe that classification of uncased explosives will improve as a 

phenomenological model is developed to capture features related to the peak of the 

fireball area and other unique features from the spectra.  Additionally, the imagery 

features examined in this effort are limited to those associated with the fireball area, 

which is only a small portion of potential information in the image.  Other important 

features could possibly be associated with the shape of the fireball, structure due to fluid 

dynamics immediately surrounding the fireball (e.g. vortices and turbulence), or the 

reflected signal from the ground or air. 
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B. Recommendations and opportunities 

Further study is necessary to understand the phenomenology behind the emissions 

from uncased explosives.  As one develops this knowledge, source intensity could be 

derived after appropriately compensating for the atmospheric effects.  The challenge is 

decoupling the atmospheric effects and the uncased emission effects.  Currently, it is 

unknown whether the area of a fireball grows because it is getting bigger or because the 

emissions in certain spectral regions drive an apparent growth.  Likewise, a disconnect 

exists between the time dependent area derived from imagery and the spectra.  The 

relationship between these two behaviors may lie in a proper description of the fireball 

emissive properties.  In addition to phenomenology driving the area time dependence, it 

is also responsible for other information, such as the time evolving shape of the fireball as 

seen in the images.   

Once these issues are resolved in the phenomenological description of the fireball, 

the source intensity should be accurately determined.  Then clear differences in the 

spectra, images, etc. of explosive type should be easily observed.  These differences 

could contain information about the emissions one observes in the 1950 to 2250 cm-1 

region and other absorption effects, which in turn should further improve the 

phenomenological model. 

Coupled with a phenomenological model is a need for better understanding of the 

limits of the instrumentation.  Accurate and frequent calibration is vital to ensure quality 

data and analysis results.  Both teams have significantly improved their ability to acquire 

accurate data, validate calibrations, and cross-validate with other collection instruments 

fielded for the same event.  Even with good calibration, none of the currently deployed 
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instruments frame fast enough to capture the first part of the explosion, which may 

contain critical phenomenological features.  Likewise, the emissions from an explosion 

change rapidly in time, which challenges the accuracy of an FTIR instrument scanning 

the spectrum with a moving mirror.  For this reason, one needs to study the effects of fast 

transient signatures recorded by an FTIR as a function of mirror velocity.  While 

recording at a slower rate, near-infrared and color imagery have proved to be effective 

sources for discrimination.  Techniques presented in this research allow the coupling of 

image and spectral information to aid classification.  Yet to better understand the kinetics 

of a fireball, one needs to investigate the spectral content of a fireball as a function of 

position on the fireball with high temporal resolution.  For this reason, future studies 

should include an instrument capable of recording spatial dependent spectra at fast 

framing rates. 

Even without new instruments, much more can be done to quantify the 

classification capability of various bomb or explosive types.  For example, pattern 

recognition techniques go well beyond those discussed in this research project.  This 

research utilizes one-dimensional linear approaches to define decision boundaries 

between classes, yet better discrimination, especially for a multiple class problem, may 

be achieved with multi-dimensional decision boundaries based upon two-dimensional 

class-conditional probability densities.  Even so, pattern recognition techniques are 

limited in effectiveness and accuracy when the problem is data starved.  Even though the 

presented work demonstrates a strong classification potential, more trials for each event 

type is needed to further quantify the objective proposed at the beginning of this work. 
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The amount of testing should be planned carefully to ensure the desired results. 

Each test series should have a classification and discrimination goal.  For example, if 

discriminating weight is the goal, then at least ten to fifteen [55] explosives of each type 

of interest should be detonated over each of the desired weight range and repeated over 

several different days.  Likewise, if type discrimination is the goal, one needs to consider 

if the weight is known a priori.  Otherwise, many repetitions of each type at each weight 

are needed.  As seen in the present study, the width and thus the potential class overlap of 

the class-conditional probability densities depends more on systematic errors between test 

series and test days than on statistical errors within the data.  Thus, a more adequate data 

set for the present study would include fifteen detonations of TNT and fifteen detonations 

of an ENE mixture, all at 50 kg.  To examine the classification potential at different 

weights and to determine if weight is distinguishable, then another set of thirty 

detonations should be at 10 kg and finally a set at 100 kg.  As one can see, tests to 

determine if enhanced explosives and TNT explosives are distinguishable are not simple 

and require time to collect adequate data for statistically valid answers.  Thus, an overall 

test plan should be established to meet objectives. 

Finally, the methods and conclusions presented in this research may contribute 

significantly to the classification ability of current operational remote sensing systems, 

allowing better target discrimination for both military and commercial customers.  These 

findings can aid program managers in the design of future remote sensors that capitalize 

on the discrimination strengths of imagery and spectra. 
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Appendix A:  NIR Fireball Areas for Brilliant Flash I 

The figures in this appendix compliments Figure 18 by providing the fireball areas from 

the near-infrared images for types A, C, and D, all from Brilliant Flash I test series. 
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Figure 76.  The fireball area in the near-infrared as a function of time for the three 
types represented in the Brilliant Flash I test series. 
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Appendix B:  Imagery Features from Brilliant Flash test series 

The tables in this appendix provide the feature values derived from the imagery 

collected during both Brilliant Flash test series.  Each feature has a value from each of the 

near-infrared (0.6-1.7 µm), red (approx. 0.7 µm), green (approx. 0.54 µm), and blue 

(approx. 0.45 µm) spectral bands.  The following tables are included: 

• Table 26. NIR imagery feature values from Brilliant Flash II test. 

• Table 27.  NIR imagery feature values from Brilliant Flash I test. 

• Table 28.  Red imagery feature values from Brilliant Flash II test. 

• Table 29.  Green imagery feature values from Brilliant Flash II test. 

• Table 30.  Blue imagery feature values from Brilliant Flash II test. 

• Table 31.  Red imagery feature values from Brilliant Flash I test. 

• Table 32.  Green imagery feature values from Brilliant Flash I test. 

• Table 33.  Blue imagery feature values from Brilliant Flash I test. 
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Table 26. NIR imagery feature values from Brilliant Flash II test. 
Event 

No. 
Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 
msec) 

(msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -1) 
(m2)                 

1 TNT 10 12154 33 118 67 73 11 74 -0.00162 0.24 50 27.8 3722 3.6 13.1 
2 TYPEF 10 786 -33 118 33 0 0 12 0.00000 -0.17 13 33.3 0 NA NA 
3 TYPEC 10 10543 0 118 0 77 12 77 -0.00083 -0.18 75 28.0 5408 2.6 6.5 
4 TYPED 10 10831 33 118 33 75 11 75 -0.00176 0.14 59 26.2 1525 6.5 38.1 
5 TYPEC 50 58508 100 117 0 162 23 168 -0.00119 0.20 159 28.5 12020 4.1 16.3 
7 TNT 10 16678 33 118 67 82 12 87 -0.00117 0.12 69 29.3 3735 3.5 12.4 
8 TNT 50 63092 133 116 100 156 21 162 -0.00101 0.28 136 27.8 15978 4.8 21.8 
9 TYPEC 50 70151 133 116 0 192 27 194 -0.00137 0.26 183 29.0 11144 4.7 21.4 

10 TYPEC 50 75723 133 116 33 194 27 211 -0.00090 0.06 205 32.9 14762 4.0 15.9 
12 TYPED 50 85187 133 116 0 196 26 209 -0.00079 0.11 198 28.5 15233 4.7 21.4 
13 TYPEB 50 22928 33 118 33 128 19 128 -0.00183 0.17 99 29.6 3332 3.7 13.5 
14 TYPEB 50 20117 33 118 33 132 20 132 -0.00135 -0.07 111 28.1 2836 4.6 20.3 
15 TNT 10 16858 33 118 33 105 16 105 -0.00179 0.00 98 29.2 2563 3.1 9.5 
17 TYPEB 50 17907 33 118 33 116 18 116 -0.00060 -0.33 117 30.8 2418 3.2 10.0 
18 TYPEB 50 19552 33 118 33 126 19 126 -0.00180 0.09 99 27.5 3827 4.1 16.1 
19 TYPED 50 64883 100 117 33 189 26 204 -0.00133 0.19 184 30.3 13074 3.9 14.4 
20 TYPED 50 64306 133 116 33 169 23 183 -0.00137 0.36 148 29.9 12380 4.5 18.9 
21 TNT 10 16691 67 118 67 99 15 99 -0.00123 0.23 55 27.8 3850 4.3 19.0 
22 TYPEC 100 128670 167 115 0 268 35 271 -0.00126 0.36 251 30.9 15914 4.8 22.2 
23 TYPEC 100 118150 167 115 100 256 34 262 -0.00139 0.45 222 28.5 14979 5.3 27.1 
24 TNT 50 57521 133 116 100 143 19 153 -0.00157 0.48 121 32.4 15655 3.6 12.7 
25 TNT 50 61372 167 115 100 140 19 149 -0.00128 0.47 108 29.9 10607 4.6 21.7 
26 TYPEB 100 42289 67 118 33 162 24 200 -0.00069 -0.12 160 29.8 5930 4.0 16.0 
27 TYPEB 100 46242 100 117 33 144 20 195 -0.00076 -0.03 153 28.7 4130 4.9 25.7 
28 TYPED 100 147610 233 112 33 249 31 271 -0.00072 0.25 234 29.1 21142 5.8 31.6 
29 TYPED 100 153340 233 112 0 258 32 295 -0.00057 0.09 271 30.7 15191 5.3 27.5 
30 TYPEC 100 141500 200 114 33 267 34 286 -0.00094 0.27 256 28.7 9330 6.2 38.5 
31 TNT 50 64733 167 115 100 147 20 161 -0.00133 0.59 87 28.0 5704 5.1 30.4 
32 TNT 1000 496480 333 106 400 675 78 689 -0.00187 1.27 472 30.2 24681 6.2 37.6 
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Event 
No. 

Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 
msec) 

(msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -1) 
(m2)                 

33 TYPED 1000 543250 367 103 533 720 81 752 -0.00264 2.05 386 31.2 21953 5.9 34.2 
34 TNT 100 97704 200 114 167 211 28 215 -0.00123 0.48 162 32.5 20689 4.2 17.3 
35 TYPEC 1000 574130 300 108 367 820 95 830 -0.00272 1.58 644 32.8 25458 5.1 25.7 
36 TNT 100 125790 233 112 167 219 28 226 -0.00070 0.31 178 30.9 28276 5.0 23.6 
37 TYPED 1000 253220 167 115 33 558 75 651 -0.00135 -0.07 584 28.0 11881 5.5 30.3 
38 TYPED 100 63673 100 117 33 191 27 218 -0.00103 0.16 168 28.9 4557 4.6 22.2 
39 TYPED 50 32415 67 118 0 101 14 151 -0.00005 -0.29 136 28.5 7307 4.0 16.5 
40 TNT 50 41563 133 116 167 116 16 116 -0.00130 0.33 101 31.3 14432 3.8 13.6 
41 TYPEE 50 44550 100 117 33 131 18 139 -0.00088 0.14 123 25.6 7251 6.0 35.3 
42 TYPEE 50 48161 100 117 33 136 19 152 -0.00095 0.19 124 27.7 4235 6.0 39.1 
43 TYPEE 50 48170 100 117 67 147 21 155 -0.00118 0.14 149 31.2 11683 3.3 10.6 
44 TNT 50 39680 133 116.07 166.67 113 16 117 -0.00146 0.45 83 28.0 5539 5.7 31.4 

 

NA is placed in the third and fourth moment values when the numerical calculations are unrealistic, e.g. when the second 

moment is zero. 
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Table 27.  NIR imagery feature values from Brilliant Flash I test. 
Event 
No. 

Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 
msec) 

(msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -1) 
(m2)                 

2 TYPEC 50 10248 -33 118 0 96 14 126 -0.01143 -0.13 114 31.1 1551 2.2 3.2 
3 TYPEC 50 70369 33 118 33 451 69 451 0.00311 -2.07 414 31.8 5687 3.5 12.9 
5 TNT 1 409 -33 118 0 0 0 8 0.00000 -0.12 8 33.3 0 NA NA 
9 TYPED 5 5253 0 118 0 48 7 48 -0.00039 -0.24 50 29.9 3787 2.1 4.4 
10 TYPEC 5 3152 -33 118 0 1 0 34 -0.00100 -0.14 35 30.9 3703 1.7 2.9 
11 TYPEC 5 13291 -33 118 0 0 0 290 0.00000 -4.35 278 33.3 0 NA NA 
12 TYPEC 5 35307 -33 118 0 0 0 593 0.08601 -13.78 583 33.3 1111 2.5 4.0 
13 TNT 1 11683 167 115 -33 20 2 52 0.00006 -0.08 31 27.3 6367 8.5 64.1 
14 TNT 1 499 -33 118 0 0 0 14 0.00000 -0.42 14 0.0 0 0.0 0.0 
15 TNT 5 4304 33 118 33 23 3 23 -0.00069 0.07 21 29.5 5427 2.8 7.1 
17 TNT 5 5255 33 118 0 26 4 31 0.00002 -0.10 30 29.6 6270 3.6 13.0 
18 TYPED 50 8255 -33 118 0 0 0 104 0.00204 -1.05 106 30.4 3586 1.8 3.0 
19 TYPED 50 83601 0 118 33 607 93 639 0.00809 -4.32 642 30.1 6209 3.6 12.9 
20 TYPED 50 46394 67 118 0 169 25 181 0.00040 -0.58 198 30.8 9224 3.8 15.5 
21 TNT 1 12901 633 62 1267 9 0 11 0.00000 0.00 8 31.7 25495 6.8 50.5 
22 TNT 1 3 -33 118 -33 0 0 0 0.00000 -0.01 0 0.0 0 0.0 0.0 
23 TNT 50 17685 33 118 67 105 16 122 -0.00793 1.16 75 28.1 6322 2.5 6.0 
24 TNT 50 25715 33 118 0 145 21 155 -0.00547 0.45 145 27.7 5701 2.6 6.5 
25 TNT 50 53038 33 118 0 201 28 379 0.00184 -1.40 307 28.1 4225 4.2 16.8 
26 TNT 1 926 -33 118 0 0 0 21 0.00000 -0.32 20 33.3 0 NA NA 
27 TNT 1 941 -33 118 33 0 0 12 -0.00144 0.02 11 33.3 1111 2.5 4.0 
29 TYPED 50 93227 -33 118 -33 2338 365 2338 0.00000 -31.96 990 33.3 -2222 0 -2 
30 TYPED 50 36742 33 118 0 162 24 211 -0.00181 -0.13 185 27.8 5549 3.4 11.3 
31 TNT 50 22574 33 118 67 126 19 127 -0.00389 0.39 114 29.2 7952 2.8 7.0 
32 TNT 50 25315 33 118 0 136 20 145 -0.00538 0.54 132 27.3 5615 2.8 7.1 
34 TNT 1 883 0 118 0 9 1 9 -0.00023 -0.03 9 31.4 3467 1.9 3.3 
35 TNT 1 219 -33 118 33 0 0 5 0.00000 -0.03 3 33.3 0 NA NA 
36 TYPEC 5 8488 0 118 0 101 16 101 0.00194 -0.78 87 27.6 1671 4.4 16.8 
37 TYPEC 5 2815 -33 118 0 0 0 33 -0.00031 -0.23 34 29.9 2872 2.2 4.3 
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Event 
No. 

Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 
msec) 

(msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -1) 
(m2)                 

39 TYPED 5 5512 0 118 0 47 7 47 -0.00099 -0.07 44 28.6 2795 3.1 8.4 
40 TYPED 5 5928 0 118 0 58 9 58 0.00040 -0.37 57 31.0 2969 2.4 5.3 
41 TYPED 5 4536 -33 118 0 0 0 56 0.00074 -0.47 53 28.5 2417 2.5 5.4 
42 TNT 1 20 -33 118 0 0 0 1 0.00000 -0.02 1 0.0 0 0.0 0.0 
43 TNT 5 5708 0 118 0 66 10 66 0.00185 -0.62 59 27.7 2002 3.9 13.4 
44 TNT 5 7416 0 118 0 72 11 72 0.00037 -0.49 74 32.9 2822 2.6 6.3 
45 TNT 5 5336 0 118 0 54 8 54 -0.00216 -0.09 52 28.0 2232 2.6 5.9 
46 TYPED 5 3683 0 118 0 37 6 37 -0.00113 -0.11 37 31.3 1463 2.5 5.2 
48 TYPED 5 3282 -33 118 0 0 0 37 -0.00042 -0.23 38 27.9 2192 2.6 6.0 
50 TYPEC 5 3703 -33 118 0 0 0 45 -0.00459 0.00 45 33.3 1111 2.5 4.0 
51 TYPEC 5 17208 -33 118 0 0 0 253 0.00853 -2.64 215 27.4 2992 3.5 11.5 

 

NA is placed in the third and fourth moment values when the numerical calculations are unrealistic, e.g. when the second 

moment is zero. 
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Table 28.  Red imagery feature values from Brilliant Flash II test. 
Event 
No. 

Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 
msec) 

(msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -1) 
(m2)                 

1 TNT- 10 10 1.5E+05 167 251 200 334 24 345 -0.0032 1.31 213 29.3 4858 9.0 67.8 
5 ENE- 50 50 2.8E+04 33 251 33 162 12 162 -0.0011 -0.31 161 29.8 4227 3.7 13.0 
6 ENE- 50 50 1.5E+05 133 251 133 381 28 381 -0.0036 1.11 294 29.5 7840 5.5 26.8 
8 TNT- 50 50 8.9E+04 167 251 233 205 15 213 -0.0014 0.51 154 29.9 21560 4.3 17.3 
9 ENE- 50 50 1.5E+05 133 251 167 389 28 393 -0.0035 1.08 314 31.3 14620 4.4 18.8 
10 ENE- 50 50 1.7E+05 133 251 200 402 29 403 -0.0032 1.12 304 27.2 8860 6.7 39.1 
11 ENE- 50 50 1.5E+05 133 251 0 337 24 372 -0.0023 0.69 286 28.6 5226 8.2 53.6 
12 ENE- 50 50 1.8E+05 167 251 33 383 28 396 -0.0023 0.74 339 32.6 17841 4.4 18.7 
13 ENE- 50 50 5.2E+04 67 251 167 175 13 187 -0.0045 1.03 135 28.3 5120 5.8 26.1 
14 ENE- 50 50 4.7E+04 67 251 33 187 14 200 -0.0033 0.39 186 31.8 8126 3.0 9.0 
15 TNT- 10 10 1.2E+04 33 251 67 76 6 78 -0.0037 0.44 63 32.3 4523 2.3 5.3 
17 ENE- 50 50 6.9E+04 67 251 67 258 19 258 -0.0042 0.83 214 29.2 3766 4.3 18.7 
18 ENE- 50 50 1.8E+05 167 251 133 451 33 452 -0.0030 1.14 316 28.4 10210 5.0 25.8 
19 ENE- 50 50 1.7E+05 167 251 133 395 29 400 -0.0018 0.41 363 32.2 19608 4.0 15.2 
21 TNT- 10 10 2.7E+04 33 251 33 144 11 144 0.0000 -0.35 131 28.3 3514 4.5 22.0 
22 ENE-100 100 3.3E+05 267 251 300 633 46 634 -0.0033 1.93 335 27.6 18967 5.9 33.2 
23 ENE-100 100 2.8E+05 200 251 200 562 40 562 -0.0025 0.97 459 29.3 19119 5.2 26.2 
24 TNT- 50 50 8.3E+04 133 251 233 195 14 211 -0.0027 0.98 132 31.6 10636 4.6 19.2 
25 TNT- 50 50 8.4E+04 167 251 300 182 13 194 -0.0018 0.70 134 30.0 14972 4.1 16.6 
27 ENE-100 100 1.2E+05 133 251 0 253 18 282 -0.0027 0.93 208 29.2 7314 6.2 34.9 
28 ENE-100 100 3.1E+05 267 251 33 464 33 514 -0.0009 0.19 490 31.2 31492 5.2 25.4 
29 ENE-100 100 3.6E+05 233 251 200 592 42 598 -0.0016 0.74 470 28.7 16299 6.3 37.9 
30 ENE-100 100 3.3E+05 233 251 267 580 42 588 -0.0028 1.41 414 32.0 14560 4.7 23.3 
31 TNT- 50 50 8.7E+04 167 251 100 185 13 194 -0.0013 0.52 146 30.1 12089 4.4 20.0 
34 TNT-100 100 2.4E+05 300 250 233 348 25 365 -0.0012 0.70 245 28.9 20701 5.4 29.0 
36 TNT-100 100 3.1E+05 367 250 433 401 28 407 -0.0009 0.73 254 30.9 38466 5.9 33.5 
38 ENE-100 100 3.0E+05 233 251 167 527 38 537 -0.0018 0.70 461 28.3 10290 6.8 45.7 
39 ENE- 50 50 1.7E+05 167 251 33 369 27 378 -0.0015 0.45 322 29.1 10678 5.1 26.5 
40 TNT- 50 50 9.0E+04 200 251 267 187 13 193 -0.0014 0.58 140 32.2 15783 4.3 18.2 
44 TNT- 50 50 8.1E+04 167 251 200 193 14 195 -0.0015 0.52 154 30.0 15074 4.4 18.6 
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Table 29.  Green imagery feature values from Brilliant Flash II test. 
Event No. Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 msec) (msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -1) 
(m2)                 

1 TNT- 10 10 87948 100 251 200 221 16 262 -0.0033 1.02 176 29.6 6907 5.6 27.5 
5 ENE- 50 50 18868 33 251 0 118 9 119 -0.0015 -0.19 122 29.7 6845 2.7 6.9 
6 ENE- 50 50 95149 100 251 0 255 19 276 -0.0030 0.78 215 28.1 3305 10.3 73.1 
8 TNT- 50 50 40112 67 251 167 149 11 155 -0.0036 0.87 105 29.2 11467 3.4 10.7 
9 ENE- 50 50 98541 133 251 167 272 20 275 -0.0028 0.70 244 31.0 8851 3.8 14.8 
10 ENE- 50 50 108580 100 251 0 288 21 313 -0.0026 0.67 244 27.0 6294 7.2 42.2 
11 ENE- 50 50 95600 100 251 0 229 17 303 -0.0022 0.54 214 29.4 5717 6.7 38.2 
12 ENE- 50 50 114150 133 251 33 270 19 309 -0.0019 0.46 265 32.0 10593 4.3 19.4 
13 ENE- 50 50 25335 33 251 33 119 9 119 -0.0041 0.70 88 27.1 5569 4.3 15.1 
14 ENE- 50 50 22272 33 251 33 120 9 120 -0.0029 0.18 119 29.9 8034 2.6 6.4 
15 TNT- 10 10 7003 0 251 33 46 3 60 -0.0035 0.26 50 28.0 4107 2.6 6.0 
17 ENE- 50 50 42147 67 251 0 175 13 181 -0.0029 0.30 174 31.4 8800 3.0 8.6 
18 ENE- 50 50 124410 133 251 33 304 22 355 -0.0019 0.35 309 31.5 14811 4.2 17.0 
19 ENE- 50 50 121750 133 251 0 284 21 344 -0.0023 0.66 244 28.0 3164 10.8 81.6 
21 TNT- 10 10 15959 33 251 33 103 8 103 -0.0002 -0.29 98 27.5 3493 4.0 15.8 
22 ENE-100 100 198020 200 251 267 412 30 430 -0.0035 1.70 229 29.8 14120 5.2 26.8 
23 ENE-100 100 179280 167 251 233 399 29 407 -0.0028 0.94 341 30.9 13182 4.3 19.0 
24 TNT- 50 50 41394 67 251 67 154 11 154 -0.0035 0.79 112 27.2 5341 5.7 26.1 
25 TNT- 50 50 42306 100 251 33 139 10 143 -0.0023 0.55 112 28.8 4599 4.6 22.0 
27 ENE-100 100 60983 100 251 0 159 11 204 -0.0023 0.59 141 29.3 3390 8.5 54.4 
28 ENE-100 100 198770 200 251 33 352 25 402 -0.0009 0.18 361 31.5 20753 5.0 25.2 
29 ENE-100 100 214140 200 251 0 379 27 447 -0.0014 0.49 335 27.3 12141 7.5 48.4 
30 ENE-100 100 195900 200 251 267 389 28 397 -0.0022 0.87 324 31.0 14274 4.6 21.5 
31 TNT- 50 50 36197 67 251 100 144 11 154 -0.0025 0.58 100 28.0 8192 3.8 14.5 
34 TNT-100 100 121090 167 251 167 278 20 278 -0.0010 0.31 225 30.6 18630 4.7 22.0 
36 TNT-100 100 153080 233 251 200 290 21 299 -0.0015 0.71 202 31.4 25058 4.6 20.1 
38 ENE-100 100 190420 200 251 33 338 24 482 -0.0011 0.22 370 31.4 11542 5.1 27.4 
39 ENE- 50 50 110300 133 251 0 233 17 332 -0.0007 -0.10 289 29.8 12815 4.7 21.8 
40 TNT- 50 50 54011 133 251 200 153 11 155 -0.0018 0.48 126 31.2 14224 3.7 12.9 
44 TNT- 50 50 47118 100 251 167 147 11 154 -0.0019 0.44 127 29.7 12554 3.5 11.6 
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Table 30.  Blue imagery feature values from Brilliant Flash II test. 
Event 

No. 
Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 
msec) 

(msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -1) 
(m2)                 

1 TNT- 10 10 18047 0 251 0 127 9 127 -0.0008 -0.14 88 31.3 555 24.7 127.5 
5 ENE- 50 50 11191 0 251 0 85 6 85 -0.0029 0.03 83 31.7 3442 2.3 4.7 
6 ENE- 50 50 49234 67 251 0 169 12 193 -0.0032 0.55 154 27.1 4375 6.6 32.3 
8 TNT- 50 50 1013 -33 251 0 0 0 28 0.0000 -0.79 28 0.0 0 0.0 0.0 
9 ENE- 50 50 51886 100 251 0 168 12 181 -0.0024 0.43 164 30.5 9891 3.6 12.4 
10 ENE- 50 50 53814 67 251 0 175 13 216 -0.0022 0.30 169 27.6 5363 6.0 28.5 
11 ENE- 50 50 49328 67 251 0 152 11 209 -0.0026 0.46 147 29.9 3163 7.3 36.4 
12 ENE- 50 50 56482 100 251 0 169 12 213 -0.0015 0.10 192 30.6 9804 3.5 12.3 
13 ENE- 50 50 1295 -67 251 -33 0 0 37 0.0000 -1.12 0 0.0 0 0.0 0.0 
14 ENE- 50 50 1589 -33 251 0 0 0 45 0.0000 -1.34 45 0.0 0 0.0 0.0 
15 TNT- 10 10 116 0 251 33 0 0 3 0.0000 -0.05 4 33.3 2222 1.4 2.0 
17 ENE- 50 50 13153 33 251 100 49 4 84 -0.0033 0.49 56 30.0 5010 3.1 9.0 
18 ENE- 50 50 61632 100 251 33 184 13 223 -0.0035 0.94 145 31.6 7699 3.9 14.8 
19 ENE- 50 50 63413 100 251 0 185 13 232 -0.0021 0.32 196 29.3 8631 3.8 14.0 
21 TNT- 10 10 5752 0 251 33 47 3 65 -0.0049 0.22 53 28.3 2352 2.5 5.5 
22 ENE-100 100 96497 133 251 67 239 17 253 -0.0032 1.15 164 31.6 12167 4.1 16.6 
23 ENE-100 100 96732 133 251 167 265 19 272 -0.0031 0.84 225 30.2 11108 4.0 15.6 
24 TNT- 50 50 486 -33 251 33 1 0 8 -0.0013 0.07 5 31.1 1206 2.7 4.1 
25 TNT- 50 50 194 -33 251 0 0 0 3 0.0002 -0.04 3 33.3 1111 2.5 4.0 
27 ENE-100 100 5141 -33 251 0 49 4 52 0.0013 -0.42 38 30.8 -289 NA 250.1 
28 ENE-100 100 98537 133 251 33 251 18 262 -0.0011 0.10 251 29.7 18197 4.3 17.3 
29 ENE-100 100 107330 133 251 0 257 19 295 -0.0015 0.30 241 28.6 13777 4.9 21.8 
30 ENE-100 100 97860 133 251 33 222 16 261 -0.0015 0.29 240 31.0 11106 3.8 15.3 
31 TNT- 50 50 498 0 251 33 2 0 9 -0.0022 0.18 3 33.3 1111 2.5 4.0 
34 TNT-100 100 4853 0 251 0 58 4 58 0.0010 -0.41 47 28.1 1729 5.2 26.0 
36 TNT-100 100 4903 0 251 0 62 5 62 0.0013 -0.47 50 28.5 1407 3.6 10.7 
38 ENE-100 100 84763 133 251 33 204 15 300 -0.0015 0.36 201 28.5 5908 5.9 35.2 
39 ENE- 50 50 48303 100 251 33 135 10 180 -0.0011 0.14 146 30.8 7560 4.1 17.1 
40 TNT- 50 50 2467 0 251 67 5 0 34 -0.0058 0.69 7 30.4 3584 1.8 3.0 
44 TNT- 50 50 2113 0 251 0 30 2 30 0.0004 -0.22 25 30.0 943 3.2 6.7 
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Table 31.  Red imagery feature values from Brilliant Flash I test. 
Event 
No. 

Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 
msec) 

(msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -1) 
(m2)                 

2 ENE- 50 50 41603 67 179 33 168 17 174 -0.0030 0.51 145 27.6 8896 3.7 13.0 
3 ENE- 50 50 29863 100 179 200 84 8 94 -0.0010 0.26 73 30.4 12044 3.9 14.8 
4 ENE- 50 50 31854 33 179 0 152 15 169 -0.0011 -0.20 161 30.9 7403 3.0 9.2 
18 ENE- 50 50 56380 67 179 0 161 15 310 -0.0032 0.58 165 27.8 1004 21.8 186.3 
19 ENE- 50 50 140050 100 179 33 400 39 455 -0.0018 0.22 343 28.5 7183 5.4 27.9 
20 ENE- 50 50 47895 67 179 167 150 15 174 -0.0033 0.86 111 27.0 5971 5.7 26.2 
23 TNT- 50 50 18918 67 179 133 85 8 98 -0.0039 0.79 54 30.3 9510 2.7 7.1 
24 TNT- 50 50 5849 0 179 33 45 5 51 -0.0057 0.47 38 28.1 1280 6.8 15.3 
25 TNT- 50 50 27855 67 179 100 91 9 95 -0.0012 0.29 68 27.8 7124 4.9 21.6 
29 ENE- 50 50 99552 100 179 0 248 24 348 -0.0012 0.00 271 27.9 5604 7.2 43.3 
30 ENE- 50 50 32173 67 179 100 139 14 148 -0.0026 0.48 108 28.0 7451 3.5 12.4 
31 TNT- 50 50 18190 33 179 33 104 10 104 -0.0041 0.62 74 27.8 2823 3.7 13.0 

 

Table 32.  Green imagery feature values from Brilliant Flash I test. 
Event 

No. 
Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 
msec) 

(msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -1) 
(m2)                 

2 ENE- 50 50 29192 33 179 33 157 16 157 -0.0030 0.21 143 27.8 6812 3.3 9.9 
3 ENE- 50 50 23027 67 179 33 80 8 90 -0.0007 0.03 86 31.1 9944 3.4 11.8 
4 ENE- 50 50 22585 0 179 0 200 20 200 0.0017 -1.15 185 28.3 3429 3.3 10.4 
18 ENE- 50 50 46079 33 179 0 205 20 323 -0.0038 0.40 176 27.8 635 29.6 227.9 
19 ENE- 50 50 127490 67 179 33 405 40 409 -0.0023 0.30 338 28.7 8288 4.8 22.1 
20 ENE- 50 50 34066 33 179 0 129 13 149 -0.0036 0.68 106 27.1 4326 5.8 25.1 
23 TNT- 50 50 8930 33 179 67 54 5 64 -0.0039 0.54 41 27.9 6059 2.6 6.3 
24 TNT- 50 50 362 -33 179 0 3 0 4 -0.0003 -0.01 3 31.2 -1212 NA -3.5 
25 TNT- 50 50 18493 33 179 67 71 7 73 -0.0004 -0.01 61 28.0 6952 5.0 22.5 
29 ENE- 50 50 94042 67 179 0 306 30 357 -0.0006 -0.48 316 27.4 5459 6.9 38.8 
30 ENE- 50 50 17692 33 179 67 103 10 105 -0.0028 0.25 92 27.9 5055 2.8 7.5 
31 TNT- 50 50 7025 0 179 33 46 5 61 -0.0029 0.16 51 27.7 2555 3.2 9.0 
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Table 33.  Blue imagery feature values from Brilliant Flash I test. 
Event 
No. 

Type W A  tmedian tmedianstd tmp Amedian Amedianstd Amp c1 c2 c3 µµµµ1 µµµµ2 µµµµ3 µµµµ4 

  (kg) (m 2 
msec) 

(msec) (msec) (msec) (m 2) (m2) (m2) (m2  

msec -2) 
(m2  

msec -

1) 

(m2)                 

2 ENE- 50 50 17912 33 179 33 125 13 125 -0.0031 0.23 102 26.7 3832 3.6 12.2 
3 ENE- 50 50 13065 67 179 33 59 6 64 -0.0015 0.29 44 26.6 5539 4.2 16.2 
4 ENE- 50 50 13767 0 179 0 114 12 114 0.0000 -0.59 119 27.3 1417 5.0 21.6 

18 ENE- 50 50 26637 33 179 0 123 12 161 -0.0037 0.52 103 27.1 3410 5.8 22.9 
19 ENE- 50 50 79000 67 179 33 225 22 301 -0.0015 0.17 217 27.9 2952 9.6 69.1 
20 ENE- 50 50 14988 0 179 0 107 11 107 -0.0028 0.28 70 27.6 1922 6.9 27.3 
23 TNT- 50 50 97 -33 179 0 0 0 2 0.0000 -0.03 2 33.3 0 1.7e7 2.0e5 
24 TNT- 50 50 0 -100 179 -100 0 0 0 0.0000 0.00 0 0.0 0 0.0 0.0 
25 TNT- 50 50 1117 -33 179 0 4 0 11 -0.0010 0.05 8 30.1 95 213.1 753.0 
29 ENE- 50 50 60137 67 179 0 160 16 216 -0.0010 0.00 176 29.2 8066 4.7 20.2 
30 ENE- 50 50 3366 0 179 33 24 2 34 -0.0037 0.30 25 28.4 2382 2.5 5.5 
31 TNT- 50 50 412 -33 179 0 0 0 12 0.0000 -0.37 12 0.0 0 0.0 0.0 
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Appendix C:  Brilliant Flash II Area Fits 

The time-dependence of a fireball area is extracted from each image recorded in 

the near-infrared.  The plots in this appendix show the Brilliant Flash II fireball areas at 

each time step (•), the peak value (∆), the area value associated with the median time (
�

), 

and the curve that fits the equation, f(t) = c1t
2 + c2t + c3.  The following figures are 

included in this appendix: 

• Figure 77.  These figures represent the fireball area in the near-infrared band for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for 

events 1 through 5 and Fig. (f) is for event 7. 

• Figure 78.  These figures represent the fireball area in the near-infrared band for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (c) are for 

events 8-10  and Figs. (d) through (f) are for event 12-14. 

• Figure 79.  These figures represent the fireball area in the near-infrared band for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (f) are for 

events 15, 17-21. 

• Figure 80.  These figures represent the fireball area in the near-infrared band for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (f) are for 

events 22-27. 

• Figure 81.  These figures represent the fireball area in the near-infrared band for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (f) are for 

events 28-33. 
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• Figure 82.  These figures represent the fireball area in the near-infrared band for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (f) are for 

events 34-39. 

• Figure 83.  These figures represent the fireball area in the near-infrared band for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for 

events 40-44. 
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Figure 77.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash II test series.  Figures (a) 
through (e) are for events 1 through 5 and Fig. (f) is for event 7. 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
(c) (d) 
 
 
 
 
 
 
 
 
 
 
 
(e) (f) 
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Figure 78.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash II test series.  Figures (a) 
through (c) are for events 8-10  and Figs. (d) through (f) are for event 
12-14. 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
(c) (d) 
 
 
 
 
 
 
 
 
 
 
 
(e) (f) 
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Figure 79.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash II test series.  Figures (a) 
through (f) are for events 15, 17-21. 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
(c) (d) 
 
 
 
 
 
 
 
 
 
 
 
(e) (f) 
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Figure 80.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash II test series.  Figures (a) 
through (f) are for events 22-27. 
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(e) (f) 
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Figure 81.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash II test series.  Figures (a) 
through (f) are for events 28-33. 
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Figure 82.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash II test series.  Figures (a) 
through (f) are for events 34-39. 
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Figure 83.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash II test series.  Figures (a) 
through (e) are for events 40-44. 

 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
(c) (d) 
 
 
 
 
 
 
 
 
 
 
 
 (e) 



www.manaraa.com

 

 154 

Appendix D:  Brilliant Flash I IR Areas 

The time-dependence of a fireball area is extracted from each image recorded in 

the near-infrared.  The plots in this appendix show the Brilliant Flash I fireball areas at 

each time step (•), the peak value (∆), the area value associated with the median time (
�

), 

and the curve that fits the equation, f(t) = c1t
2 + c2t + c3.  The following figures are 

included in this appendix: 

• Figure 84.  These figures represent the fireball area in the near-infrared band for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (f) are for events 2, 3, 5, 

9-11. 

• Figure 85.  These figures represent the fireball area in the near-infrared band for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (f) are for events 12-15, 

17-18. 

• Figure 86.  These figures represent the fireball area in the near-infrared band for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (f) are for events 19-24. 

• Figure 87.  These figures represent the fireball area in the near-infrared band for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (f) are for events 25-27, 

29-31. 

• Figure 88.  These figures represent the fireball area in the near-infrared band for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (f) are for events 32, 34-

37, 39. 

• Figure 89.  These figures represent the fireball area in the near-infrared band for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (f) are for events 40-45. 
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• Figure 90.  These figures represent the fireball area in the near-infrared band for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (d) are for events 46, 48, 

50-51. 
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Figure 84.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash I test series.  Figures (a) 
through (f) are for events 2, 3, 5, 9-11. 
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(e) (f) 



www.manaraa.com

 

 157 

−100 −50 0 50 100
0

100

200

300

400

500

600

700

t (msec)

A
F

B
 (

m
2 )

−100 0 100 200 300 400 500 600
0

10

20

30

40

50

60

t (msec)

A
F

B
 (

m
2 )

0 200 400 600 800 1000 1200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (msec)

A
F

B
 (

m
2
)

−100 −50 0 50 100 150 200 250

0

5

10

15

20

25

t (msec)

A
F

B
 (

m
2 )

−100 −50 0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

t (msec)

A
F

B
 (

m
2 )

−100 −50 0 50 100 150
0

20

40

60

80

100

120

t (msec)

A
F

B
 (

m
2 )

 

Figure 85.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash I test series.  Figures (a) 
through (f) are for events 12-15, 17-18. 
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Figure 86.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash I test series.  Figures (a) 
through (f) are for events 19-24. 
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Figure 87.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash I test series.  Figures (a) 
through (f) are for events 25-27, 29-31. 
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Figure 88.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash I test series.  Figures (a) 
through (f) are for events 32, 34-37, 39. 
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Figure 89.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash I test series.  Figures (a) 
through (f) are for events 40-45. 
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Figure 90.  These figures represent the fireball area in the near-infrared band for 
events recorded during the Brilliant Flash I test series.  Figures (a) 
through (d) are for events 46, 48, 50-51. 
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Appendix E:  Brilliant Flash II 3-Chip Areas 

The time-dependence of a fireball area is extracted from each image recorded by 

the 3-chip color camera.  The plots in this appendix show the Brilliant Flash II fireball 

areas for each color at each time step (•), the peak value (∆), the area value associated 

with the median time (
�

), and the curve that fits the equation, f(t) = c1t
2 + c2t + c3.  The 

following figures are included in this appendix: 

• Figure 91.  These figures represent the fireball area for each of the three color bands for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for events 

1-5. 

• Figure 92.  These figures represent the fireball area for each of the three color bands for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for events 

6, 8-11. 

• Figure 93.  These figures represent the fireball area for each of the three color bands for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for events 

12-15, 17. 

• Figure 94.  These figures represent the fireball area for each of the three color bands for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for events 

18-19, 21-23. 

• Figure 95.  These figures represent the fireball area for each of the three color bands for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for events 

24-25, 27-29. 

• Figure 96.  These figures represent the fireball area for each of the three color bands for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for events 

30-34. 



www.manaraa.com

 

 164 

• Figure 97.  These figures represent the fireball area for each of the three color bands for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for events 

35-39. 

• Figure 98.  These figures represent the fireball area for each of the three color bands for 

events recorded during the Brilliant Flash II test series.  Figures (a) through (e) are for events 

40-44. 
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Figure 91.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash II test series.  
Figures (a) through (e) are for events 1-5. 
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Figure 92.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash II test series.  
Figures (a) through (e) are for events 6, 8-11. 
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Figure 93.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash II test series.  
Figures (a) through (e) are for events 12-15, 17. 
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Figure 94.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash II test series.  
Figures (a) through (e) are for events 18-19, 21-23. 
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Figure 95.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash II test series.  
Figures (a) through (e) are for events 24-25, 27-29. 
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Figure 96.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash II test series.  
Figures (a) through (e) are for events 30-34. 
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Figure 97.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash II test series.  
Figures (a) through (e) are for events 35-39. 
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Figure 98.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash II test series.  
Figures (a) through (e) are for events 40-44. 
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Appendix F:  Brilliant Flash I 3-Chip Areas 

The time-dependence of a fireball area is extracted from each image recorded by 

the 3-chip color camera.  The plots in this appendix show the Brilliant Flash I fireball 

areas for each color at each time step (•), the peak value (∆), the area value associated 

with the median time (
�

), and the curve that fits the equation, f(t) = c1t
2 + c2t + c3.  The 

following figures are included in this appendix: 

• Figure 99.  These figures represent the fireball area for each of the three color bands for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (e) are for events 1-5. 

• Figure 100.  These figures represent the fireball area for each of the three color bands for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (e) are for events 7-11. 

• Figure 101.  These figures represent the fireball area for each of the three color bands for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (e) are for events 13-17. 

• Figure 102.  These figures represent the fireball area for each of the three color bands for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (e) are for events 18-22. 

• Figure 103.  These figures represent the fireball area for each of the three color bands for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (e) are for events 23-25, 29-30. 

• Figure 104.  These figures represent the fireball area for each of the three color bands for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (e) are for events 31, 34, 38-40. 

• Figure 105.  These figures represent the fireball area for each of the three color bands for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (e) are for events 41-45. 

• Figure 106.  These figures represent the fireball area for each of the three color bands for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (e) are for events 46-50. 

• Figure 107.  These figures represent the fireball area for each of the three color bands for events 

recorded during the Brilliant Flash I test series.  Figures (a) through (c) are the blue, green, and red 

spectral bands, respectively, for event 51. 
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Figure 99.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash I test series.  
Figures (a) through (e) are for events 1-5. 
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Figure 100.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash I test series.  
Figures (a) through (e) are for events 7-11. 
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Figure 101.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash I test series.  
Figures (a) through (e) are for events 13-17. 
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Figure 102.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash I test series.  
Figures (a) through (e) are for events 18-22. 
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Figure 103.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash I test series.  
Figures (a) through (e) are for events 23-25, 29-30. 
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Figure 104.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash I test series.  
Figures (a) through (e) are for events 31, 34, 38-40. 
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Figure 105.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash I test series.  
Figures (a) through (e) are for events 41-45. 
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Figure 106.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash I test series.  
Figures (a) through (e) are for events 46-50. 
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Figure 107.  These figures represent the fireball area for each of the three color 
bands for events recorded during the Brilliant Flash I test series.  
Figures (a) through (c) are the blue, green, and red spectral bands, 
respectively, for event 51. 
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Appendix G:  Scaling Laws, NIR features, BFI & BFII 

Each extracted feature derived from the near-infrared image is examined for 

weight scaling relationships.  The first figure presented in this appendix is an overall 

summary of all the features while each of the individual plots is given in the remaining 

figures.  The data points marked as “x” are the enhanced novel explosive (ENE) events 

(Types B through E) and marked as “o” are Type A (TNT) events.  The weights are 10 

kg, 50 kg, and 100 kg.  The least square fit lines have error bars which are described in 

Chapter IV, Section H; the errors associated with ENE are dotted lines, while those 

associated with Type A are dash-dotted lines.  The following is a list of figures for this 

appendix: 

• Figure 108.  Each feature extracted from the fireball NIR image is plotted here as 

a function of weight, showing potential scaling relationships. 

• Figure 109.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) through (f) contain features A, tmedian, 

στ_µεδιαν, Amedian, tmp, and Amp. 

• Figure 110.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) through (f) contain features 

σΑ_µεδιαν, .c1, c2, c3, µ1, and µ1. 

• Figure 111.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) through (b) contain features µ3 and µ4 
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Figure 109.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain features 
A, tmedian, σt_median, Amedian, tmp, and Amp. 
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Figure 110.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain features 
σA_median, .c1, c2, c3, µ1, and µ1. 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
(c) (d) 
 
 
 
 
 
 
 
 
 
 
 
 
(e) (f) 

σσ σσ A
_m

ed
ia

n
 (m

2 ) 



www.manaraa.com

 

 187 

10 20 30 40 50 60 70 80 90 100 110
−2

−1

0

1

2

3

4

5
3

W (kg)

µ 3 (
un

itl
es

s)

10 20 30 40 50 60 70 80 90 100 110
−5

0

5

10

15

20
4

W (kg)

µ 4 (
un

itl
es

s)

 

Figure 111.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (b) contain features 
µ3 and µ4 
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Appendix H:  Scaling Laws, 3-Chip features, BFI & BFII 

Each extracted feature derived from the 3-chip color image is examined for 

weight scaling relationships.  The first figure presented in this appendix is an overall 

summary of all the features for each color while each of the individual plots is given in 

the remaining figures.  The data points marked as “x” are the enhanced novel explosive 

(ENE) events (Types B through E) and marked as “o” are Type A (TNT) events.  The 

weights are 10 kg, 50 kg, and 100 kg.  The least square fit lines have error bars which are 

described in Chapter IV, Section H; the errors associated with ENE are dotted lines, 

while those associated with Type A are dash-dotted lines.  The following is a list of 

figures for this appendix: 

• Figure 112.  Each feature extracted from the fireball color image is plotted here as 

a function of weight, showing potential scaling relationships. 

• Figure 113.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) through (f) contain the red band 

features for A, tmedian, στ_µεδιαν, tmp, Amedian, σΑ_µεδιαν. 

• Figure 114.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) through (f) contain the red band 

features for Amp, c1, c2, c3, µ1, and µ2. 

• Figure 115.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) and (b) contain the red band features 

for the third and fourth moments, while Figures (c) through contain the green 

band features for A, tmedian, στ_µεδιαν, tmp, and Amedian. 
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• Figure 116.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) through (f) contain the green band 

features for tmp, σΑ_µεδιαν, Amp, c1, c2, and c3. 

• Figure 117.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) through (d) contain the green band 

features for the four moments, while Figures (e) and (f) contain the blue band 

features for A and tmedian. 

• Figure 118.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) through (f) contain the blue band 

features for στ_µεδιαν, tmp, Amedian,� 
A_median, Αµπ, and c1. 

• Figure 119.  Potential scaling relationships exhibit fireball area features 

dependence upon weight (W).  Figures (a) through (f) contain the blue band 

features for c1, c2, and the first four moments. 
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Figure 113.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain the red 
band features for A, tmedian, σt_median, tmp, Amedian, σA_median. 
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Figure 114.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain the red 
band features for Amp, c1, c2, c3, µ1, and µ2. 
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Figure 115.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) and (b) contain the red band 
features for the third and fourth moments, while Figures (c) through 
contain the green band features for A, tmedian, σt_median, tmp, and Amedian. 
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Figure 116.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain the green 
band features for tmp, σA_median, Amp, c1, c2, and c3. 
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Figure 117.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (d) contain the 
green band features for the four moments, while Figures (e) and (f) 
contain the blue band features for A and tmedian. 
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Figure 118.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain the blue 
band features for σt_median, tmp, Amedian, σA_median, Amp, and c1. 
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Figure 119.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain the blue 
band features for c1, c2, and the first four moments. 
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Appendix I:  Scaling Laws, Spectral Data, Radiant  

Each extracted feature derived from the spectra collected on the Radiant events is 

examined for weight and scaling relationships.  The first figure presented in this appendix 

is an overall summary of all the features while each of the individual plots is given in the 

remaining figures.  The data points marked as “x” are the static events and marked as “o” 

are dynamically dropped events.  Each of the plots abscissa axis is labeled as 10, 50, and 

100, which are actually numerical symbols for Type A Small, Type B Medium, and Type 

B Large, respectively.  The least square fit lines have error bars which are described in 

Chapter IV, Section H; the errors associated with static events are dotted lines, while 

those associated with the dynamics events are dash-dotted lines.  The following is a list of 

figures for this appendix: 

• Figure 120.  Each feature extracted from the fireball spectra is plotted here as a function 

of weight, showing potential scaling relationships. 

• Figure 121.  Potential scaling relationships exhibit fireball area features dependence upon 

weight (W).  Figures (a) through (f) contain the spectral features for TH, TL, Γ, σΤΗ, 

σΤΛ, and σΓ. 

• Figure 122.  Potential scaling relationships exhibit fireball area features dependence upon 

weight (W).  Figures (a) through (f) contain the spectral features for AA, ASwitch, Aka, 

AB, Akb, and AC. 

• Figure 123.  Potential scaling relationships exhibit fireball area features dependence upon 

weight (W).  Figures (a) through (f) contain the spectral features for At0, ∆Ιµπ/τ, tmp, 

∆Ιο/τ, ∆Ι2/τ, and ∆Ι0.5/τ. 
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• Figure 124.  Potential scaling relationships exhibit fireball area features dependence upon 

weight (W).  Figures (a) through (c) contain the spectral features for R2/0, R2/0.5, and 

Rmp/0. 
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Figure 121.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain the 
spectral features for TH, TL, Γ, σTH, σTL, and σΓ. 
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Figure 122.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain the 
spectral features for AA, ASwitch, Aka, AB, Akb, and AC. 
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Figure 123.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (f) contain the 
spectral features for At0, ∆Imp/τ, tmp, ∆Io/τ, ∆I2/τ, and ∆I0.5/τ. 
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Figure 124.  Potential scaling relationships exhibit fireball area features 
dependence upon weight (W).  Figures (a) through (c) contain the 
spectral features for R2/0, R2/0.5, and Rmp/0. 
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Appendix J:  Spectral Features from Radiant test series 

One method to represent each recorded event spectra from the Radiant test series 

is by a Planckian multiplied by an appropriate atmospheric transmission function.  The 

result generates area and temperature temporal profiles along with a residual between the 

fit and the data.  Extracted feature values from these profiles and residual are listed in the 

following tables included in this appendix: 

• Table 34.  Temperature fit values to the Radiant data. 

• Table 35.  Area fit values from Radiant data. 

• Table 36.  Features derived from the residuals for the Radiant data.  The residuals 

are the differences between the Plankian fit and the data.  These residuals are 

integrated from 1950 to 2250 cm-1. 
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Table 34.  Temperature fit values to the Radiant data. 
Event ID Type Angle Test TH TL Γ σTH σTL σΓ 

    (K) (K) (s-1) (%) (%) (%) 

e214_03b A (S) 155° Perpendicular  RB3A 1439 357 0.63 2.8 3.9 7.0 

e214_04b A (S) 155° Perpendicular  RB3A 1736 331 0.70 1.7 3.9 4.4 

e214_05b A (S) 155° Perpendicular  RB3A 1625 373 0.85 2.3 4.1 6.0 

e214_06b A (S) 155° Perpendicular  RB3A 1690 386 0.89 1.6 2.0 3.7 

e214_07b A (S) 155° Perpendicular  RB3A 1485 405 1.13 2.6 2.7 6.4 

e215_22b A (S) 335° Toward RB3A  1845 384 0.81 1.1 2.1 2.8 

e216_30b A (S) 65° Away RB3A  1449 367 0.81 1.2 1.9 3.2 

e216_32b A (S) 65° Away RB3A  1214 381 0.81 0.8 1.0 2.2 

e216_33b A (S) 65° Away RB3A  1288 381 0.95 0.8 0.9 2.1 

e298_04b A (S) 45° Tower RB3B  1687 331 0.69 1.0 1.1 2.1 

e298_05b A (S) 45° Tower RB3B  1783 338 0.70 1.0 1.0 2.0 

e298_06b A (S) 45° Tower RB3B  1685 324 0.81 1.7 1.5 3.3 

e298_07b A (S) 45° Tower RB3B  1660 337 0.69 0.9 1.2 2.0 

e298_08b A (S) 45° Tower RB3B  1580 300 0.78 1.0 1.0 2.1 

e298_10b A (S) 45° Tower RB3B  1584 302 0.72 1.0 1.0 2.0 

e301_12b A (S) 45° Tower RB3B  1602 315 0.67 1.2 1.3 2.4 

e301_18b A (S) 45° Tower RB3B  1577 361 0.92 0.7 0.9 1.6 

e301_21b A (S) 45° Tower RB3B  1451 309 0.60 0.8 0.9 1.7 

e214_10b B (L) 155° Perpendicular  RB3A 1375 345 0.42 2.3 6.0 7.7 

e214_13b B (L) 155° Perpendicular  RB3A 1589 410 0.68 1.4 2.4 3.9 

e215_18b B (L) 335° Toward RB3A  1648 700 0.68 13.7 27.1 67.9 

e215_20b B (L) 335° Toward RB3A  1788 302 0.38 1.7 7.7 5.5 

e215_21b B (L) 335° Toward RB3A  1752 351 0.54 0.8 2.7 2.6 

e216_43b B (L) 65° Away RB3A  1190 416 1.06 2.4 1.9 6.5 

e301_15b B (L) 30° Elevation RB3B  1485 313 0.66 1.8 2.5 4.0 

e301_16b B (L) 10° Elevation RB3B  1526 373 1.34 1.6 1.3 3.5 

e214_14b B (M) 155° Perpendicular  RB3A 1707 423 0.89 3.2 11.4 12.6 

e214_15b B (M) 155° Perpendicular  RB3A 1574 442 1.50 2.3 1.8 5.4 

e216_39b B (M) 65° Away RB3A  1175 407 1.16 1.6 1.3 4.3 
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Table 35.  Area fit values from Radiant data. 
Event ID Type A_A A_Switch A_ka A_B A_kb A_C A_t0 
  (cm2) (unitless) (s-1) (cm2) (s-1) (cm2 

s-1) 
(s) 

e214_03b A (S) 8.0E+07 8 6.4 7513800 1.0 1.5 13008000 

e214_04b A (S) 1.1E+08 7 6.3 6000000 0.8 0.6 8500100 

e214_05b A (S) 6.0E+06 37 13.0 5300000 15.6 0.6 16000000 

e214_06b A (S) 7.0E+06 1000 2.8 5500000 0.6 0.5 4000000 

e214_07b A (S) 7.0E+06 445 34.1 7958100 8.8 1.0 0 

e215_22b A (S) 3.0E+06 281 25.8 10000000 3.5 0.5 8000100 

e216_30b A (S) 1.5E+08 12 7.6 12892000 10.3 1.0 10541000 

e216_32b A (S) 3.0E+07 12 6.4 16000000 36.0 0.5 12000000 

e216_33b A (S) 2.0E+07 0 1.6 13000000 9.6 1.0 25000000 

e298_04b A (S) 2.0E+07 85 2.1 26000000 7.4 0.5 45000000 

e298_05b A (S) 5.1E+07 21 1.8 14540000 1146.4 0.4 29778000 

e298_06b A (S) 1.8E+07 39 2.3 34253000 6.5 0.1 38222000 

e298_07b A (S) 2.7E+07 42 1.4 30000000 5.9 0.7 52000000 

e298_08b A (S) 2.0E+07 12 2.9 50000000 10.5 0.8 80000000 

e298_10b A (S) 8.0E+07 16 17.9 60000000 5.7 1.0 85000000 

e301_12b A (S) 1.0E+07 228 7.6 30000000 7.6 0.3 23000000 

e301_18b A (S) 7.1E+06 34 2.0 13782000 16.9 0.7 26736000 

e301_21b A (S) 1.0E+08 6823 1785.3 25578000 13.6 1.3 56353000 

e214_10b B (L) 3.5E+07 581 25.3 19364000 9.8 1.3 15204000 

e214_13b B (L) 1.8E+07 113 3.1 12000000 5.2 0.8 13000000 

e215_18b B (L) 4.2E+06 9 4.3 1034300 5.4 0.3 382070 

e215_20b B (L) 1.5E+07 9 0.7 13475000 21.1 1.7 10962000 

e215_21b B (L) 9.1E+06 120 11.3 13543000 4.3 1.0 15000000 

e216_43b B (L) 1.3E+08 608 22.5 98547000 6.4 0.8 197780000 

e301_15b B (L) 7.0E+07 253 5.3 20000000 5.3 0.9 20000000 

e301_16b B (L) 9.8E+07 590 16.6 24755000 8.7 0.5 101070000 

e214_14b B (M) 6.0E+06 56 21.0 8500500 17.8 1.2 10000000 

e214_15b B (M) 6.0E+06 203 5.1 12000000 5.8 0.3 20000000 

e216_39b B (M) 2.0E+07 486 53.3 17968000 467.0 0.5 20576000 
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Table 36.  Features derived from the residuals for the Radiant data.  The residuals 
are the differences between the Plankian fit and the data.  These 
residuals are integrated from 1950 to 2250 cm-1. 

Event ID Type CO 
Imp 

CO 
tmp 

CO 
Io 

CO 
t2 

CO 
I2 

CO 
t0.5 

CO 
I0.5 

CO 
RI2/I0 

CO 
R2/0.5 

CO 
Rmp/0 

  (W/Sr)  (sec) (W/Sr)  (sec) (W/Sr)  (sec) (W/Sr)    

e214_03b A (S) 6.2E+05 0.000 6.2E+05 2.041 1.7E+05 0.522 2.9E+05 0.27 1.74 1.00 

e214_04b A (S) 1.0E+06 0.048 9.1E+05 2.045 1.4E+05 0.523 6.1E+05 0.15 4.36 1.13 

e214_05b A (S) 1.2E+06 0.000 1.2E+06 2.044 2.4E+05 0.523 8.7E+05 0.21 3.54 1.00 

e214_06b A (S) 1.3E+06 0.000 1.3E+06 2.044 6.0E+04 0.523 4.9E+05 0.05 8.21 1.00 

e214_07b A (S) 1.1E+06 0.000 1.1E+06 2.041 9.1E+04 0.521 3.8E+05 0.09 4.16 1.00 

e215_22b A (S) 1.6E+06 0.707 7.9E+05 2.026 2.0E+05 0.518 1.5E+06 0.25 7.31 2.06 

e216_30b A (S) 2.6E+06 0.333 1.2E+06 2.047 1.7E+05 0.523 1.7E+06 0.14 9.76 2.16 

e216_32b A (S) 1.5E+06 0.048 1.4E+06 2.000 1.4E+05 0.524 1.0E+06 0.10 7.44 1.09 

e216_33b A (S) 1.0E+06 0.286 7.3E+05 2.003 5.6E+04 0.524 6.9E+05 0.08 12.17 1.39 

e298_04b A (S) 5.3E+06 0.196 3.0E+06 2.007 5.8E+05 0.538 4.0E+06 0.19 6.97 1.77 

e298_05b A (S) 6.5E+06 0.440 2.5E+06 2.007 7.4E+05 0.538 6.2E+06 0.30 8.42 2.63 

e298_06b A (S) 5.3E+06 0.344 2.1E+06 2.017 1.8E+05 0.541 5.0E+06 0.09 27.32 2.49 

e298_07b A (S) 6.9E+06 0.296 2.8E+06 2.022 8.8E+05 0.543 6.4E+06 0.31 7.27 2.45 

e298_08b A (S) 8.8E+06 0.197 3.9E+06 2.024 5.6E+05 0.542 6.7E+06 0.14 12.07 2.24 

e298_10b A (S) 7.8E+06 0.443 3.4E+06 2.019 6.8E+05 0.542 7.6E+06 0.20 11.28 2.29 

e301_12b A (S) 5.3E+06 0.294 3.2E+06 2.008 9.3E+05 0.539 4.5E+06 0.29 4.88 1.64 

e301_18b A (S) 3.2E+06 0.147 1.7E+06 2.010 2.0E+05 0.539 1.9E+06 0.12 9.58 1.90 

e301_21b A (S) 3.9E+06 0.147 2.7E+06 2.021 6.5E+05 0.542 2.7E+06 0.24 4.19 1.44 

e214_10b B (L) 3.2E+06 0.047 2.7E+06 2.035 1.4E+06 0.520 1.6E+06 0.51 1.15 1.21 

e214_13b B (L) 3.2E+06 0.000 3.2E+06 2.031 7.2E+05 0.518 2.3E+06 0.23 3.13 1.00 

e215_18b B (L) 4.3E+05 0.609 9.5E+04 2.015 5.2E+04 0.515 4.2E+05 0.55 8.05 4.50 

e215_20b B (L) 5.3E+06 1.360 2.3E+06 2.016 3.4E+06 0.516 4.3E+06 1.50 1.26 2.31 

e215_21b B (L) 2.9E+06 0.988 1.6E+06 2.023 1.1E+06 0.517 2.3E+06 0.66 2.11 1.76 

e216_43b B (L) 6.9E+06 0.000 6.9E+06 2.000 7.4E+05 0.523 3.7E+06 0.11 5.02 1.00 

e301_15b B (L) 4.7E+06 0.000 4.7E+06 2.015 2.8E+05 0.540 2.2E+06 0.06 7.97 1.00 

e301_16b B (L) 5.5E+06 0.000 5.5E+06 2.013 9.5E+04 0.540 1.0E+06 0.02 10.95 1.00 

e214_14b B (M) 1.3E+06 0.142 1.3E+06 2.034 2.0E+05 0.520 1.0E+06 0.15 5.21 1.01 

e214_15b B (M) 1.8E+06 0.000 1.8E+06 2.033 1.3E+05 0.520 8.6E+05 0.07 6.63 1.00 

e216_39b B (M) 1.9E+06 0.000 1.9E+06 2.001 1.2E+05 0.524 6.3E+05 0.07 5.07 1.00 
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Appendix K:   

Comparison plots of MR154 and MR354 InSb spectrometer data  

with radiometers for Brilliant Flash II events 

One method of comparing spectrometer and radiometer instruments is to integrate 

and scale the spectrometer data for each radiometer spectral band (see Table 8 in Chapter 

III.  The scaling factor and the temporal profile provide a quantitative comparison.  This 

appendix contains the scaling factors for each event followed by the temporal profiles for 

each individual event. 
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Figure 125.  Integrating the spectra over a specific radiometer spectral band and 
scaling it such that the peak value matches the peak radiometer value 
provides a simple instrument comparison.  These figures contain the 
results of scaling both the MR154 data (▲ ) and MR354 data (∆) and 
also show the 33% accuracy window for each spectral band (a) band I, 
(b) band II, (c) band IV, and (d) band V. 
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Figure 126.  Band comparison for event 1.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 127.  Band comparison for event 2.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 



www.manaraa.com

 

 212 

59:52.229 59:52.479 59:52.729 59:52.979 59:53.229

−1

0

1

2

3

4

5

6

x 10
5

t (MM:SS.sss)

I 
(W

/S
r)

Radiometer M5
Comparison Spectrometer M5 x 1.5398
Your Spectrometer M5 x 0.32145

59:52.229 59:52.479 59:52.729 59:52.979 59:53.229

−4

−2

0

2

4

6

8

10

12

14
x 10

5

t (MM:SS.sss)

I (
W

/S
r)

Radiometer M7
Comparison Spectrometer M7 x 2.2402
Your Spectrometer M7 x 0.67052

59:52.229 59:52.479 59:52.729 59:52.979

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x 10
5

t (MM:SS.sss)

I (
W

/S
r)

Radiometer S4
Comparison Spectrometer S4 x 1.5678
Your Spectrometer S4 x 0.79083

59:52.229 59:52.479 59:52.729 59:52.979 59:53.229

−1

0

1

2

3

4

x 10
6

t (MM:SS.sss)

I 
(W

/S
r)

Radiometer S7
Comparison Spectrometer S7 x 1.6675
Your Spectrometer S7 x 1.0592

 

Figure 128.  Band comparison for event 3.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 129.  Band comparison for event 4.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 130.  Band comparison for event 5.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 131.  Band comparison for event 6.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 132.  Band comparison for event 7.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 133.  Band comparison for event 10.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 134.  Band comparison for event 11.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 135.  Band comparison for event 13.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 136.  Band comparison for event 14.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 137.  Band comparison for event 15.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 138.  Band comparison for event 17.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 



www.manaraa.com

 

 223 

59:59.646 59:59.846 00:00.046 00:00.246 00:00.446 00:00.646 00:00.846 00:01.046

0

1

2

3

4

5

x 10
8

t (MM:SS.sss)

I 
(W

/S
r)

MRC Radiometer M5
MRC Spectrometer M5 x 911.5118
AFIT Spectrometer M5 x 1157.9651

59:59.646 59:59.846 00:00.046 00:00.246 00:00.446 00:00.646 00:00.846 00:01.046

0

1

2

3

4

5

x 10
9

t (MM:SS.sss)

I 
(W

/S
r)

MRC Radiometer M7
MRC Spectrometer M7 x 8722.4991
AFIT Spectrometer M7 x 8987.533

59:59.646 59:59.846 00:00.046 00:00.246 00:00.446 00:00.646 00:00.846 00:01.046

0

1

2

3

4

5

6

7

x 10
8

t (MM:SS.sss)

I 
(W

/S
r)

MRC Radiometer S4
MRC Spectrometer S4 x 2546.196
AFIT Spectrometer S4 x 2886.9005

59:59.646 59:59.846 00:00.046 00:00.246 00:00.446 00:00.646 00:00.846 00:01.046

0

1

2

3

4

5

6

7

8
x 10

9

t (MM:SS.sss)

I 
(W

/S
r)

MRC Radiometer S7
MRC Spectrometer S7 x 3470.8771
AFIT Spectrometer S7 x 3636.6851

 

Figure 139.  Band comparison for event 18.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 140.  Band comparison for event 19.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 141.  Band comparison for event 21.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 142.  Band comparison for event 22.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 143.  Band comparison for event 23.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 144.  Band comparison for event 25.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 145.  Band comparison for event 26.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 146.  Band comparison for event 27.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 147.  Band comparison for event 28.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 148.  Band comparison for event 29.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 149.  Band comparison for event 30.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 



www.manaraa.com

 

 234 

59:59.774 59:59.974 00:00.174 00:00.374 00:00.574 00:00.774 00:00.974 00:01.174

0

1

2

3

4

5

6

7

8

x 10
5

t (MM:SS.sss)

I 
(W

/S
r)

NAIC Radiometer Band I
NAIC Spectrometer Band I x 0.95665
AFIT Spectrometer Band I x 0.89738

59:59.774 59:59.974 00:00.174 00:00.374 00:00.574 00:00.774 00:00.974 00:01.174

−2

0

2

4

6

8

10

12

14

x 10
5

t (MM:SS.sss)

I 
(W

/S
r)

NAIC Radiometer Band II
NAIC Spectrometer Band II x 0.83453
AFIT Spectrometer Band II x 0.81369

59:59.774 59:59.974 00:00.174 00:00.374 00:00.574 00:00.774 00:00.974 00:01.174

0

1

2

3

4

5

6

x 10
5

t (MM:SS.sss)

I 
(W

/S
r)

NAIC Radiometer Band IV
NAIC Spectrometer Band IV x 0.86957
AFIT Spectrometer Band IV x 0.78813

59:59.774 59:59.974 00:00.174 00:00.374 00:00.574 00:00.774 00:00.974 00:01.174
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
6

t (MM:SS.sss)

I 
(W

/S
r)

NAIC Radiometer Band V
NAIC Spectrometer Band V x 0.74837
AFIT Spectrometer Band V x 0.68478

 

Figure 150.  Band comparison for event 31.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 151.  Band comparison for event 32.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 152.  Band comparison for event 33.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 153.  Band comparison for event 34.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 154.  Band comparison for event 36.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 155.  Band comparison for event 37.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 156.  Band comparison for event 38.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 157.  Band comparison for event 39.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 158.  Band comparison for event 40.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 159.  Band comparison for event 41.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 160.  Band comparison for event 42.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 161.  Band comparison for event 43.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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Figure 162.  Band comparison for event 44.  “Comparison Spectrometer” is from 
the MR354 FTIR and “Your Spectrometer” is from the MR154 FTIR. 
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